Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на вопросы(ГИС).doc
Скачиваний:
18
Добавлен:
08.05.2019
Размер:
2.81 Mб
Скачать

4.3. Основы теории управления (Кафедра иис)

  1. Управление и информация. Общие принципы системной организации.

  2. Передаточные функции и частотные характеристики систем управления. Устойчивость и чувствительность систем управления.

  3. Инвариантность, управляемость и наблюдаемость систем управления. Критерии Калмана.

  4. Цифровые системы управления. Особенности математического описания цифровых систем управления.

4.4. Архитектура эвм и систем (Кафедра иис)

  1. Функциональная и структурная организация процессора

Электронные вычислительные машины включают, кроме аппаратурной части и программного обеспечения (ПО), большое количество функциональных средств. К ним относятся коды, с помощью которых обрабатываемая информация представляется в цифровом виде: арифметические коды - для выполнения арифметических преобразований числовой информации; помехозащищенные коды, используемые для защиты информации от искажений;

коды формы, определяющие, как должна выглядеть обрабатываемая в ЭВМ информация при отображении; цифровые коды аналоговых величин (звука, “живого видео”) и др. Кроме кодов на функционирование ЭВМ оказывают влияние алгоритмы их формирования и обработки, технология выполнения различных процедур (например, начальной загрузки операционной системы, принятой в системе технологии обработки заданий пользователей и др.); способы использования различных устройств и организация их работы (например, организация системы прерываний или организация прямого доступа к памяти), устранение негативных явлений (например, таких, как фрагментация памяти) и др.

Будем считать, что коды, система команд, алгоритмы выполнения машинных операций, технология выполнения различных процедур и взаимодействия hard и soft, способы использования устройств при организации их совместной работы, составляющие идеологию функционирования ЭВМ, образуют функциональную организацию ЭВМ.

Реализована идеология функционирования ЭВМ может быть по-разному: аппаратурными, программно-аппаратурными или программными средствами. При аппаратурной и программно-аппаратурной реализации могут быть применены регистры, дешифраторы, сумматоры; блоки жесткого аппаратурного управления или микропрограммного с управлением подпрограммами (комплексами микроопераций); устройства или комплексы устройств, реализованные в виде автономных систем (программируемых или с жестким управлением) и др. При программной реализации могут быть применены различные виды программ - обработчики прерываний, резидентные или загружаемые драйверы, соm-, ехе- или tsr - программы, bat- файлы и др.

Будем считать, что способы реализации функций ЭВМ составляют структурную организацию ЭВМ. Тогда элементная база, функциональные узлы и устройства ЭВМ, программные модули различных видов (обработчики прерываний, драйверы, соm-, ехе-, tsr-программы, bat-файлы и др.) являются структурными компонентами ЭВМ.

При серьезных конструктивных различиях ЭВМ могут быть совместимыми, т.е. приспособленными к работе с одними и теми же программами (программная совместимость) и получению одних и тех же результатов при обработке одной и той же, однотипно представленной информации (информационная совместимость). Если аппаратурная часть электронных вычислительных машин допускает их электрическое соединение для совместной работы и предусматривает обмен одинаковыми последовательностями сигналов, то имеет место и техническая совместимость ЭВМ.

Совместимые ЭВМ должны иметь одинаковую функциональную организацию: информационные элементы (символы) должны одинаково представляться при вводе и выводе из ЭВМ, система команд должна обеспечивать в этих ЭВМ получение одинаковых результатов при одинаковых преобразованиях информации. Работой таких машин должны управлять одинаковые или функционально совместимые операционные системы (а для этого должны быть совместимы методы и алгоритмы планирования и управления работой аппаратурно-программного вычислительного комплекса). Аппаратурные средства должны иметь согласованные питающие напряжения, частотные параметры сигналов, а главное - состав, структуру и последовательность выработки управляющих сигналов.

При неполной совместимости ЭВМ (при наличии различий в их функциональной организации) применяют эмуляторы, т.е. программные преобразователи функциональных элементов.

Состав функциональных блоков и структурных средств неоднороден. Поэтому в большинстве случаев функциональная и структурная организация будут рассматриваться в тех разделах, которые посвящены соответствующим аппаратурной части (hardware) или программному обеспечению (Software).

  1. Понятие о многомашинных и многопроцессорных вычислительных системах.

Вычислительная техника в своем развитии по пути повышения быстродействия ЭВМ приблизилась к физическим пределам. Время переключения электронных схем достигло долей наносекунды, а скорость распространения сигналов в линиях, связывающих элементы и узлы машины, ограничена значением 30 см/нс (скоростью света). Поэтому дальнейшее уменьшение времени переключения электронных схем не позволит существенно повысить производительность ЭВМ. В этих условиях требования практики (сложные физико-технические расчеты, многомерные экономико-математические модели и другие задачи) по дальнейшему повышению быстродействия ЭВМ могут быть удовлетворены только путем распространения принципа параллелизма на сами устройства обработки информации и создания многомашинных и многопроцессорных (мультипроцессорных) вычислительных систем. Такие системы позволяют производить распараллеливание во времени выполнения программы или параллельное выполнение нескольких программ.

В настоящее время исключительно важное значение приобрела проблема обеспечения высокой надежности и готовности вычислительных систем, работающих в составе различных АСУ и АСУ ТП, особенно при работе, в режиме реального времени. Эта проблема решается на основе использования принципа избыточности, который ориентирует также на построение многомашинных или многопроцессорных систем (комплексов). Появление дешевых и небольших по размерам микропроцессоров и микро-ЭВМ облегчило построение и расширило область применения многопроцессорных и многомашинных ВС разного назначения

Различие понятий многомашинной и многопроцессорной ВС поясняет рис.6.1. Многомашинная ВС (ММС) содержит несколько ЭВМ, каждая из которых имеет свою ОП и работает под управлением своей операционной системы, а также средства обмена информацией между машинами. Реализация обмена информацией происходит, в конечном счете, путем взаимодействия операционных систем машин между собой. Это ухудшает динамические характеристики процессов межмашинного обмена данными. Применение многомашинных систем позволяет повысить надежность вычислительных комплексов. При отказе в одной машине обработку данных может продолжать другая машина комплекса. Однако можно заметить, что при этом оборудование комплекса недостаточно эффективно используется для этой цели. Достаточно в системе, изображенной на рис.6.1,а в каждой ЭВМ выйти из строя по одному устройству (даже разных типов), как вся система становится неработоспособной.

Этих недостатков лишены многопроцессорные системы (МПС). В таких системах (рис. 6.1,б) процессоры обретают статус рядовых агрегатов вычислительной системы, которые подобно другим агрегатам, таким, как модули памяти, каналы, периферийные устройства, включаются в состав системы в нужном количестве.

Вычислительная система называется многопроцессорной, если она содержит несколько процессоров, работающих с общей ОП (общее поле оперативной памяти) и управляется одной общей операционной системой. Часто в МПС организуется общее поле внешней памяти.

Под общим полем понимается равнодоступность устройств. Так, общее поле памяти означает, что все модули ОП доступны всем процессорам и каналам ввода-вывода (или всем периферийным устройствам в случае наличия общего интерфейса); общее поле ВЗУ означает, что образующие его устройства доступны любому процессору и каналу.

В МПС по сравнению с ММС достигается более быстрый обмен информацией между процессорами и поэтому может быть получена более высокая производительность, более быстрая реакция на ситуации, возникающие внутри системы и в ее внешней среде, и более высокие надежность и живучесть, так как система сохраняет работоспособность, пока работоспособны хотя бы по одному модулю каждого типа устройств.

Многопроцессорные системы представляют собой основной путь построения ВС сверхвысокой производительности. При создании таких ВС возникает много сложных проблем, к которым в первую очередь следует отнести распараллеливание вычислительного процесса (программ) для эффективной загрузки процессоров системы, преодоление конфликтов при попытках нескольких процессоров использовать один и тот же ресурс системы (например, некоторый модуль памяти) и уменьшение влияния конфликтов на производительность системы, осуществление быстродействующих экономичных по аппаратурным затратам межмодульных связей. Указанные вопросы необходимо учитывать при выборе структуры МПС.

На основе многопроцессорности и модульного принципа построения других устройств системы возможно создание отказоустойчивых систем, или, другими словами, систем повышенной живучести.

Однако построение многомашинных систем из серийно выпускаемых ЭВМ с их стандартными операционными системами значительно проще, чем построение МПС, требующих преодоления определенных трудностей, возникающих при реализации общего поля памяти, и, главное, трудоемкой разработки специальной операционной системы.

Многомашинные и многопроцессорные системы могут быть однородными и неоднородными. Однородные системы содержат однотипные ЭВМ или процессоры. Неоднородные ММС состоят из ЭВМ различного типа, а в неоднородных МПС используются различные специализированные процессоры, например процессоры для операций с плавающей запятой, для обработки десятичных чисел, процессор, реализующий функции операционной системы, процессор для матричных задач и др.

Многопроцессорные системы и ММС могут иметь одноуровневую или иерархическую (многоуровневую) структуру. Обычно менее мощная машина (машина-сателлит) берет на себя ввод информации с различных терминалов и ее предварительную обработку, разгружая от этих сравнительно простых процедур основную, более мощную ЭВМ, чем достигается увеличение общей производительности (пропускной способности) комплекса. В качестве машин-сателлитов используют малые или микро-ЭВМ.

Важной структурной особенностью рассматриваемых ВС является способ организации связей между устройствами (модулями) системы. Он непосредственно влияет на быстроту обмена информацией между модулями, а следовательно, на производительность системы, быстроту ее реакции на поступающие запросы, приспособленность к изменениям конфигурации и, наконец, размеры аппаратурных затрат на осуществление межмодульных связей. В частности, от организации межмодульных связей зависят частота возникновения конфликтов при обращении процессоров к одним и тем же ресурсам (в первую очередь модулям памяти) и потери производительности из-за конфликтов.

Используются следующие способы организации межмодульных (межустройственных) связей:

регулярные связи между модулями;

многоуровневые связи, соответствующие иерархии интерфейсов ЭВМ;

многовходовые модули (в частности, модули памяти);

коммутатор межмодульных связей (“Эльбрус” Рис.6.2);

общая шина (“СМ ЭВМ” Рис.6.3).

Принципы организации МПС и ММС существенно отличаются в зависимости от их назначения. Поэтому целесообразно различать:

ВС, ориентированные в первую очередь на достижение сверхвысокой производительности;

ВС, ориентированные в первую очередь на повышение надежности и живучести.

  1. Информационно-вычислительные системы и сети.

Электро́нная вычисли́тельная маши́на (ЭВМ) — вычислительная машина, построенная с использованием в качестве функциональных элементов электронных устройств вместо механических. Термин употреблялся для отличия от исторического предшественника — механической вычислительной машины.

В настоящее время словосочетание «электронная вычислительная машина» почти вытеснено из бытового употребления. Аббревиатуру «ЭВМ» в основном используют как правовой термин в юридических документах, инженеры цифровой электроники, также в историческом смысле — для обозначения компьютерной техники 1940-1980-х годов, и для обозначения больших вычислительных устройств, в отличие от персональных. Также «ЦВМ» — «цифровая вычислительная машина» в противовес «АВМ» — «аналоговая вычислительная машина».

При помощи вычислений компьютер способен обрабатывать информацию по определённому алгоритму. Решение любой задачи для компьютера является последовательностью вычислений.

Физически компьютер может функционировать за счёт перемещения каких-либо механических частей, движения электронов,фотонов, или за счёт использования эффектов любых других физических явлений.

Архитектура компьютеров может изменяться в зависимости от типа решаемых задач. Оптимизация архитектуры компьютера производится с целью максимально реалистично математически моделировать исследуемые физические (или другие) явления. Так, электронные потоки могут использоваться в качестве моделей потоков воды при компьютерном моделировании(симуляции - computing simulation) дамб, плотин или кроветока в человеческом мозгу. Подобным образом сконструированныеаналоговые компьютеры были обычны в 1960-х годах, однако сегодня стали достаточно редким явлением.

В большинстве современных компьютеров проблема сначала описывается в понятном им виде (при этом вся необходимая информация как правило представляется в двоичной форме — в виде единиц и нулей, хотя существовали и компьютеры на троичной системе счисления), после чего действия по её обработке сводятся к применению простой алгебры логики. Поскольку практически вся математика может быть сведена к выполнению булевых операций[источник не указан 218 дней], достаточно быстрыйэлектронный компьютер может быть применим для решения большинства математических задач, а также и большинства задач по обработке информации, которые могут быть сведены к математическим.

Было обнаружено, что компьютеры могут решить не любую математическую задачу. Впервые задачи, которые не могут быть решены при помощи компьютеров, были описаны английским математиком Аланом Тьюрингом.

Результат выполненной задачи может быть представлен пользователю при помощи различных устройств ввода-вывода информации, таких, как ламповые индикаторы, мониторы, принтеры, проекторы и т. п.