
- •Степин б. Д
- •Глава 1
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Глава 10
- •Глава 11
- •Глава 12
- •Глава 13
- •Глава 14
- •Глава 1
- •1.1. Стекло
- •1.2. Керамика, керметы, графит и асбест
- •1.3. Полимерные материалы
- •1.4. Металлы
- •1.5. Материалы для фильтрования
- •1.6. Резина и каучуки (пробки и шланги)
- •1.7. Смазки, замазки и уплотняющие средства
- •1.8. Вода
- •1.9. Ртуть
- •1.10. Монтажные приспособления, крепежные изделия и амортизаторы
- •Глава 2
- •2.1. Химические стаканы, колбы и реторты
- •2.2. Колокола, колпаки, склянки и пробирки
- •2.3. Промывалки, эксикаторы и сосуды Дьюара
- •2.4. Краны, зажимы, клапаны, затворы каплеуловители
- •2.5. Сифоны, переходные трубки, алоюки, шлифы, стеклянные трубки и капилляры
- •2.6. Делительные и капельные воронки, ампулы и бюксы
- •2.7. Холодильники
- •2.8. Ступки, чашки, тигли, лодочки и шпатели
- •2.9. Очистка и сушка химической посуды
- •Глава 3
- •3.1. Технохимические весы
- •3.2. Аналитические весы
- •3.3. Гидростатические весы
- •3.4. Газовые и торзионные (крутильные) весы
- •3.5. Специальные весы
- •3.6. Весовая комната
- •Глава 4
- •4.1. Мерные цилиндры, мензурки и другая мерная посуда
- •4.2. Мерные колбы и пикнометры
- •4.3. Пипетки
- •4.4. Бюретки
- •4.6. Определение плотности жидких и твердых веществ
- •Глава 5
- •5.1. Ртутные термометры
- •5.2. Газовые тензиметрические термометры
- •5.3. Паровые и жидкостные манометрические термометры
- •5.4. Термометры сопротивления
- •5.5. Термисторы
- •5.6. Термопары
- •5.7. Пирометры
- •5.8. Конусы Зегера (керамические пироскопы)
- •5.9. Регулирование температуры
- •5.10. Термостаты
- •5.11. Криостаты
- •Глава 6
- •6.4. Инфракрасные излучатели
- •6.6 Электропечи
- •6.7. Индукционные печи
- •6.8. Высокочастотные диэлектрические нагреватели
- •6.9. Газовые печи
- •6.10. Сушильные шкафы
- •6.11. Средства и приборы для охлаждения
- •6.12. Теплоизоляция
- •Глава 7
- •7.1. Измельчение
- •7.2. Высушивание и прокаливание порошков
- •7.3. Просеивание сухих порошков
- •7.4. Смешивание порошков
- •7.5. Хранение
- •7.6. Возгонка (сублимация) и десублимация
- •7.8. Определение температуры плавления
- •7.9. Измерение степени влажности
- •Глава 8
- •8.2. Перекачивание жидкости
- •8.3. Удаление влаги и растворенных газов из органических жидкостей
- •8.4. Перегонка жидкостей (дистилляция)
- •8.5. Молекулярная перегонка
- •8.6. Элементарная техника жидкостной экстракции
- •8.7. Определение температур кипения жидкостей
- •8.8. Капиллярные вискозиметры
- •8.9. Хранение жидкостей
- •Глава 9
- •9.1. Растворение.
- •9.2. Перемешивание
- •9.3. Выпаривание и концентрирование растворов
- •9.5. Промывание осадков
- •9.6. Кристаллизация веществ из растворов
- •9.7. Кристаллизация вещества из расплава
- •9.8. Выращивание монокристаллов
- •9.9. Экстракция примесей из смеси твердых фаз
- •9.10. Определение молярной массы вещества-неэлектролита
- •Глава10. Эксперименты с газами
- •10.1. Приборы для получения газов
- •10.2. Приборы для реакций газов с твердыми веществами
- •10.3. Очистка и осушка газов
- •10.4. Измерение давления газа
- •2 • 104 Па (150 торр).
- •10.5. Измерение давления пара вещества
- •10.6. Регулирование давления
- •10.7. Измерение расхода газа
- •10.8. Получение вакуума и избыточного давления
- •10.9. Ловушки для конденсации газов
- •10.10. Хранение газов
- •10.11. Измерение плотности и объема газов
- •10.12. Определение влажности газов
- •Глава 11. Электрохимические исследования и синтезы
- •11.2. Химические источники тока и электроды
- •11.3. Измерения водородного показателя
- •11.4. Электролиз
- •11.5. Электрический разряд в газах
- •11.6. Электродиализ
- •Глава 12
- •12.2. Автоклавы
- •12.3. Компрессоры
- •Глава 13
- •13.1. Микрососуды, микропипетки и пластинки
- •13.2. Градуированные микропипетки, микробюретки и микромерные колбы
- •13.3. Нагревание
- •13.4. Перемешивание и измельчение
- •13.5. Растворение, выпаривание и высушивание
- •13.6. Фильтрование
- •13.7. Перегонка и возгонка
- •13.8. Экстракция
- •13.9. Определение температур плавления и кипения
- •13.10. Определение плотности
- •Глава 14
- •14.1. Источники света
- •14.2. Жидкостные, стеклянные и интерференционные светофильтры
- •14.3. Фотохимические реакторы
2 • 104 Па (150 торр).
Вакуумметр Боденштейна можно использовать в сильно агрессивной среде, так как газы в нем приходят в соприкосновениe только с кварцем. Он выдерживает также нагревание до 500 °С без заметного изменения положения нулевой точки. Однако при использовании таких вакуумметров необходимо обеспечить надежное крепление прибора, исключающее какие-либо сотрясения. Диапазон измеряемого давления вакуумметрами Боденштейна составляет 103 - 105 Па (10-760 торр).
Боденштейн Макс (1871-1942) - немецкий химик, исследовал кинетику газовых химических реакций.
Ложечковый вакуумметр (рис. 247,б) состоит из сосуда 3, пустотелой кварцевой ложечки 4, имеющей на конце острие 5, выполняющее функции стрелки, и указателя нулевого положения 6. Этот прибор является чувствительным датчиком, его соединяют через трубку 2 со стандартным вакуумметром. Перед измерением давления сосуд 3 откачивают так, чтобы оставшийся в нем воздух имел меньшее давление, чем давление в измеряемой системе. Затем трубку 1 соединяют с этой системой. Ложечка из-за разности давлений изгибается, и острие 5 отклоняется от указателя нулевого положения 6. После этого в сосуд 3 осторожно впускают воздух и следят за положением острия 5. При совпадении его с указателем нулевого положения 6 закрывают кран на трубке 2 и отмечают значение давления, показываемого вакуумметром, присоединенным к трубке 2.
Толщина стенки ложечки составляет 0,5 - 0,8 мм, а диаметр острия 5 1,5 - 2,0 мм при длине 150 - 200 мм. Если к сосуду 3 присоединить микроскоп с окуляром, имеющим шкалу, и прокалибровать отклонения острия по стандартному вакуумметру, то надобность в отдельном вакуумметре отпадает.
Тепловые вакуумметры. Тепловые вакуумметры применяют для измерения значений среднего вакуума в интервале от 1 до 10 Па. Их действие основано на линейной зависимости теплопроводности газов от давления. Несмотря на некоторые недостатки тепловых вакуумметров - зависимости показаний от состава газа и температуры окружающей среды, инерционности погрешности измерений, достигающей 10 - 40%, - они успешно конкурируют с ртутными вакуумметрами, так как в них не используется ртуть. Что касается погрешности измерений, то она самая маленькая среди электронных вакуумметров. Например, у ионизационных и магнитных электроразрядных вакуумметров погрешность составляет соответственно 30 - 50% и 60%.
Рис. 248. Манометр Пирани со свободно подвешенной нитью (а) и с натянутой нитью накаливания (б): а: 1 - колба; 2 - нить накаливания; 3 - трубка; А - миллиамперметр; Б1 и Б2 - постоянные источники тока с напряжением соответственно 4 и 20 В; R1 и R2 - реостаты с сопротивлением 25 Ом
Наиболее известен среди тепловых вакуумметров - вакуумметр Пирани.
Прибор представляет собой стеклянный баллон 1 (рис. 248,а) диаметром 12-15 мм, в котором свободно подвешена платиновая нить 2 диаметром 0,06 мм и длиной 70 мм. Стеклянный баллон с такой подвеской укрепляют только вертикально. В других конструкциях (рис. 248,б) нить 4 растягивают в баллоне при помощи пружин 2. В этом случае баллон 1 может занимать любое положение. Баллон соединяют через трубку 3 с прибором, давление в котором надо измерить.
Если проволоку нагреть электрическим током, то окружающий ее газ (в зависимости от давления) понизит температуру нити за счет теплопроводности, в результате изменится и электропроводность проволоки. Мерой давления будет служить значение силы тока, необходимой для поддержания свечения нити. (Баллон с нитью затемняют чехлом или закрашивают в черный цвет, оставляя окно для наблюдения за свечением нити.)
Установлено, что достаточно изменения силы тока всего на ±5%, чтобы яркость свечения накаленной нити изменилась на 50%. Температуру нити определяют визуально по яркости накаливания или при помощи термопары, приваренной к центру нити.
Калибруют манометр Пирани по ртутному манометру для каждого газа отдельно. Для этого его соединяют через трубку 3 с вакуумной системой, в которой вакуум несколько больше рабочего, например 104 Па (100 торр). Затем при помощи реостата R1 устанавливают ток, при котором нить начинает светиться (около 450 °С). Ток, протекающий через миллиамперметр А, компенсируется встречным током от батареи Б2, регулируемым реостатом R2. Положение ручки реостата R2 фиксируют и в дальнейшем не изменяют. При уменьшении давления ток, необходимый для поддержания свечения нити на прежнем уровне, падает, и нить гаснет, схема разбалансируется и стрелка миллиамперметра (50 - 100 мА) отклоняется. Это отклонение и является мерой давления газа в баллоне 1. Восстанавливают свечение нити реостатом R1.
Наибольшая чувствительность манометра Пирани лежит области 10 - 4 • 103 Па (0,07 - 30 торр), где сила тока линейно зависит от логарифма давления газа.