Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Matematika_20-40.docx
Скачиваний:
32
Добавлен:
01.05.2019
Размер:
618.2 Кб
Скачать

Вопрос38. Сравнение бесконечно малых. Свойства эквивалентных бесконечно малых. И их таблица.

Сравнение бесконечно малых функций.

Пусть и — две функции, бесконечно малые в точке . Если , то говорят, что более высокого порядка малости, чем и обозначают . Если же , то более высокого порядка малости, чем ; обозначают . Бесконечно малые функции и называются бесконечно малыми одного порядка малости, если , обозначают .  И, наконец, если  не существует, то бесконечно малые функции и несравнимы.  

ПРИМЕР 2.  Сравнение бесконечно малых функций

Эквивалентные бесконечно малые функции.

Если , то бесконечно малые функции и называются эквивалентными, обозначают ~ .

Свойства эквивалентных бесконечно малых:

1. Разность двух эквивалентных бесконечно малых есть бесконечно малая высшего порядка относительно каждой из них.

2. Если из суммы нескольких бесконечно малых разных порядков отбросить бесконечно малые высших порядков, то оставшаяся часть, называемая главной, эквивалентна всей сумме.

Из первого свойства следует, что эквивалентные бесконечно малые могут сделаться приближенно равными со сколь угодно малой относительной погрешностью. Поэтому знак мы применяем как для обозначения эквивалентности бесконечно малых, так и для записи приближенного равенства их достаточно малых значений.

α(x)→0

1

sinα(x)~α(x)

2

arcsinα(x)~α(x)

3

tgα(x)~α(x)

4

arctgα(x)~α(x)

5

loga(1+α(x))~(logae)α(x)

6

ln(1+α(x))~α(x)

7

aα(x)-1~α(x)lna,a>0,a≠1

8

eα(x)-1~α(x)

9

(1+α(x))μ-1~μα(x)

10

1+α(x)n-1~α(x)n

11

1+α(x)-1~α(x)2

12

1-cosα(x)~12α2(x)

Вопрос39. Односторонние пределы в точке. Различные определения непрерывности функции в точке. Непрерывность суммы, произведения, частного двух функций. Н епрерывность элементарной функции.

ОДНОСТОРОННИЕ ПРЕДЕЛЫ

Если f(x) стремится к пределу b при x стремящемся к некоторому числу a так, что xпринимает только значения, меньшие a, то пишут и называют bпределом функции f(x) в точке a слева.

Таким образом, число b называется пределом функции y=f(x) при x→aслева, если каково бы ни было положительное число ε, найдется такое число δ (меньшее a), что для всех выполняется неравенство .

Аналогично, если x→a и принимает значения большие a, то пишут и называют b пределом функции в точке а справа. Т.е. число b называется пределом функции y=f(x) при x→a справа, если каково бы ни было положительное число ε, найдется такое число δ (большее а), что для всех выполняется неравенство .

Непрерывность функции в точке. 

  Определение. Функция f(x), определенная в окрестности некоторой точки х0, называется непрерывной в точке х0, если предел функции и ее значение в этой точке равны, т.е.

 Определение. Функция f(x) называется непрерывной в точке х = х0, если приращение функции в точке х0 является бесконечно малой величиной.

 

f(x) = f(x0) + (x)

где (х) – бесконечно малая при хх0.

 Свойства непрерывных функций.

1) Сумма, разность и произведение непрерывных в точке х0 функций – есть функция, непрерывная в точке х0.

 

2) Частное двух непрерывных функций – есть непрерывная функция при условии, что g(x) не равна нулю в точке х0.

  3) Суперпозиция непрерывных функций – есть непрерывная функция.

Это свойство может быть записано следующим образом:

Если u = f(x), v = g(x) – непрерывные функции в точке х = х0, то функция v = g(f(x)) – тоже непрерывнаяфункция в этой точке.

 

Непрерывность некоторых элементарных функций.

  1) Функция f(x) = C, C = const – непрерывная функция на всей области определения.

  2) Рациональная функция  непрерывна для всех значений х, кроме тех, при которых знаменатель обращается в ноль. Таким образом, функция этого вида непрерывна на всей области определения.

 

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]