Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Matematika_20-40.docx
Скачиваний:
32
Добавлен:
01.05.2019
Размер:
618.2 Кб
Скачать

Вопрос34. Числовая последовательность. Предел числовой последовательности (конечный и бесконечный). Геометрическая иллюстрация. Теорема о сходимости монотонной и ограниченной последовательности.

Последовательность — этопздц(набор) элементов некоторого множества:

для каждого натурального числа можно указать элемент данного множества;

Определение

Пусть задано некоторое множество X элементов произвольной природы.

Всякое отображение из множества натуральных чисел в заданное множество X называется последовательностью (элементов множества X).

Образ натурального числа n, а именно, элемент xn = f(n), называется n-ымчленом или элементом последовательности, а порядковый номер члена последовательности — её индексом.

Предел числовой последовательности— это такое число, что для всякой сколь угодно малой величины существует номер, начиная с которого уклонение членов последовательности от данной точки становится меньше заранее заданной величины.

Определение

Число называется пределом числовой последовательности , если последовательность является бесконечно малой, т. е. все её элементы, начиная с некоторого, по модулю меньше любого заранее взятого положительного числа.

Частичный предел последовательности — это предел одной из её подпоследовательностей.

Верхний предел последовательности — это наибольшая из её предельных точек.

Нижний предел последовательности — это наименьшая из её предельных точек.

Вопрос36. Бесконечно малые функции и их свойства. Как и бесконечно большие. Связь между ними. Бесконечный предел функции в точке и на бесконечности.

Функция y=f(x) называется бесконечно малой при x→a или при x→∞, если или , т.е. бесконечно малая ф ункция – это функция, предел которой в данной точке равен нулю.

Примеры.

Функция f(x)=(x-1)2 является бесконечно малой при x→1, так как (см. рис.).

Функция f(x) = tgx – бесконечно малая при x→0.

f(x) = ln (1+x)– бесконечно малая при x→0.

f(x) = 1/x– бесконечно малая при x→∞.

Установим следующее важное соотношение:

Теорема. Если функция y=f(x) представима при x→aв виде суммы постоянного числа b и бесконечно малой величины α(x): f (x)=b+ α(x) то .

Обратно, если , то f (x)=b+α(x), где a(x) – бесконечно малая при x→a.

Доказательство.

Докажем первую часть утверждения. Из равенства f(x)=b+α(x) следует |f(x) – b|=| α|. Но так как a(x) – бесконечно малая, то при произвольном ε найдется δ – окрестность точки a, при всех x из которой, значения a(x) удовлетворяют соотношению |α(x)|<ε. Тогда |f(x) – b|< ε. А это и значит, что .

Если , то при любом ε>0 для всех х из некоторой δ – окрестность точки a будет |f(x) – b|< ε. Но если обозначимf(x) – b= α, то |α(x)|<ε, а это значит, что a – бесконечно малая.

Вопрос37. Первый и второй замечательный пределы и следствия из них.

Замеча́тельныепреде́лы — термин, использующийся в советских и российских учебниках по математическому анализу для обозначения некоторых широко известных математических тождеств со взятием предела. Особенно известны:

Первый замечательный предел:

Второй замечательный предел:

Следствия

Следствия

для ,

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]