
- •Оглавление
- •1. Системная парадигма. Системы и закономерности их функционирования и развития. Система и ее свойства (компоненты, связи, целостность, структура и функции, интегративные качества).
- •1 Свойство: Целостность и членимость.
- •2 Свойство: Связи.
- •3 Свойство: Организация.
- •4 Свойство: Интегративные качества.
- •2. Моделирование как основа экономического анализа и проектирования сложных систем. Виды моделирования.
- •3. Системы, представимые графами. Применение в экономическом анализе и проектировании информационного обеспечения.
- •4. Управление проектами
- •4. Случайные величины и их распределения. Идентификация случайных явлений. Оценки параметров. Проверка гипотез. Метод Монте-Карло. Регрессия.
- •5. Базовые вычислительные методы (решение линейных уравнений, линейное программирование, численные методы).
- •6. Исследование операций. Математические постановки задач и методы решения.
- •7. Метод принятия решений в условиях известных состояний природы
- •8. Принятие решений в условиях неопределенности. Критерии принятия решения в условиях неопределенности.
- •9. Разработка и принятие управленческих решений. Метод парных сравнений.
- •Метод парных сравнений
- •Примеp1:
- •10. Представление принятия решения с помощью «Дерева принятия решения»
- •11. Разработка и принятие управленческих решений. Метод анализа иерархии
- •13. Понятие компьютерного моделирования. Метод имитационного моделирования, его сущность и особенности, область применения.
- •14. Имитационное моделирование. Общая технологическая схема и оценки реализаций.
- •15. Дискретное (процессно-ориентированное) имитационное моделирование. Базовая концепция структуризации языка моделирования gpss.
- •16. Модели и методы системной динамики: парадигма, общая структурная схема, графические нотации (системные потоковые диаграммы), инструментальные среды, реализации.
- •17. Многоагентное моделирование: новая парадигма и инновационные инструменты компьютерного моделирования.
- •18. Искусственный интеллект, направление и доведенные до применений результаты.
- •19. Экспертные системы. Понятие и обеспечение применения.
- •2 Основных режима:
- •20. Нейрокомпьютинг. Понятие и основные особенности использования.
- •21. Системы поддержки принятия решений, эволюция, архитектура, основные элементы аналитической системы (хранилище данных, olap, DataMining).
- •22. Методы и технологии анализа данных и принятия решений. Оперативный анализ данных. Интеллектуальный анализ данных. Методы сценарного планирования. Управление знаниями.
- •23. Техника оперативного анализа данных (olap).
- •24. Задача анализа данных – построение ассоциативных правил, решения в управлении.
- •25. Задача анализа данных – кластерный анализ, решения в управлении
- •27. Глобальная компьютерная сеть Интернет. Технологии Веб.Основные модели и технологические решения для электронного бизнеса.
- •30. Языки и системы моделирования: назначение, классификация, технологические возможности современных коммерческих симуляторов.
- •31. Язык ProLog. Особенности, применение в решениях.
- •38. Прототипирование в разработке проекта информационной системы. Виды прототипов и технологический переход от прототипа к промышленной системе.
- •40. Понятие бизнес-процесса. Методологии и инструментальныесредства моделирования бизнес-процессов. Реинжиниринг бизнес-процесов.
- •41. Методологии и технологии автоматизированного проектирования.Применение объектно-ориентированного подхода к анализу и проектированию информационных систем.
- •42. Методологии и технологии автоматизированного проектирования.Создание интегрированных информационных систем с использованием технологии corba и технологии сом.
- •43. Понятие case. Основные функции, общая архитектура, преимущества использования при проектировании информационных систем.
- •44. Case-средства. Понятие и классификация по типам, категориям и уровням. Критерии выбора case-средств при проектировании информационных систем. Примеры.
- •45. Информационная безопасность: цели, типы угроз; принципы, основные функции и механизмы обеспечения безопасности и надежности функционирования информационных систем.
- •1. Методологические
- •2. Правовые
- •3. Реализационные
- •4. Организационные принципы
- •1. Функции защиты
- •2. Управление механизмами защиты
- •4. Источники угроз.
- •46. Управление информационными рисками при проектировании системы информационной безопасности.
- •1 Этап. Анализ рисков.
- •2 Этап. Выбор и реализация эффективных и экономичных защитных мер.
- •48. Управление информационными системами организации: референсные модели и передовые практики управления службой ис (Cobit, itil, itsm).
- •49. Управление службой информационных систем: задачи, функции, организационная структура.
- •51. ProjectExpert- инструмент моделирования финансово-хозяйственной деятельности компании.
- •52. Автоматизированные системы управления. Циркуляция информации в асу, нормативная и регистрационная модели, базовые системотехнические выводы.
- •53. Корпоративная информационная система. Основные концепции автоматизации управления. Анализ рынка программных продуктов.
- •54. Концепция erp- решений. Эволюция систем стандартов и соглашений.
- •Корпоративная информационная система как среда реализации функций управления.
- •55. Корпоративная информационная система как среда реализации функций управления. Интеграция в информационных системах. Информационная инфраструктура организации.
- •56. Аналитические информационные системы и их место в процессах управления и информационной инфраструктуре предприятия, системы бизнес-интеллекта.
- •59. Приоритетные и приоритетно-рандомизированные схемы ветвления в задачах календарного планирования.
- •60. Схема разузлования в расчете себестоимости и комплектации сложных изделий.
- •61. Управление в регулярном производстве: модель заготовительного участка.
- •62. Имитационное моделирование производственных, логистических, бизнес-процессов. Цифровое производство.
- •63. Имитационное моделирование цепей поставок.
- •Индустриальная динамика Форрестера
- •Динамика города:
- •2)Мировая динамика.
- •66. Многоагентное компьютерное моделирование и экономика поведения. Наиболее существенные приложения в управлении и социальных исследованиях.
10. Представление принятия решения с помощью «Дерева принятия решения»
Алгоритмы построения деревьев решений позволяют предсказать значение какого-либо параметра для заданного случая (например, возвратит ли человек вовремя выданный ему кредит) на основе большого количества данных о других подобных случаях (в частности, на основе сведений о других лицах, которым выдавались кредиты). Обычно алгоритмы этого семейства применяются для решения задач, позволяющих разделить все исходные данные на несколько дискретных групп.
Когда один из алгоритмов построения деревьев решений применяется к набору исходных данных, результат отображается в виде дерева. Подобные алгоритмы позволяют осуществить несколько уровней такого разделения, разбивая полученные группы (ветви дерева) на более мелкие на основании других признаков до тех пор, пока значения, которые предполагается предсказывать, не станут одинаковыми (или, в случае непрерывного значения предсказываемого параметра, близкими) для всех полученных групп (листьев дерева). Именно эти значения и применяются для осуществления предсказаний на основе данной модели.
Деревья классификации- это метод, позволяющий предсказывать принадлежность наблюдений или объектов к тому или иному классу категориальной зависимой переменной в зависимости от соответствующих значений одной или нескольких предикторных переменных. Построение деревьев классификации - один из наиболее важных методов, используемых при проведении "добычи данных".
Цель построения деревьев классификации заключается в предсказании (или объяснении) значений категориальной зависимой переменной, и поэтому используемые методы тесно связаны с более традиционными методами Дискриминантного анализа, Кластерного анализа, Непараметрической статистики и Нелинейного оценивания. Широкая сфера применимости деревьев классификации делает их весьма привлекательным инструментом анализа данных, но не следует поэтому полагать, что его рекомендуется использовать вместо традиционных методов статистики. Напротив, если выполнены более строгие теоретические предположения, налагаемые традиционными методами, и выборочное распределение обладает некоторыми специальными свойствами, то более результативным будет использование именно традиционных методов. Однако, как метод разведочного анализа, или как последнее средство, когда отказывают все традиционные методы, деревья классификации, по мнению многих исследователей, не знают себе равных.
Что же такое деревья классификации? Представьте, что вам нужно придумать устройство, которое отсортирует коллекцию монет по их достоинству (например, 1, 2, 3 и 5 копеек). Предположим, что какое-то из измерений монет, например - диаметр, известен и, поэтому, может быть использован для построения иерархического устройства сортировки монет. Заставим монеты катиться по узкому желобу, в котором прорезана щель размером с однокопеечную монету. Если монета провалилась в щель, то это 1 копейка; в противном случае она продолжает катиться дальше по желобу и натыкается на щель для двухкопеечной монеты; если она туда провалится, то это 2 копейки, если нет (значит это 3 или 5 копеек) - покатится дальше, и так далее. Таким образом, мы построили дерево классификации. Решающее правило, реализованное в этом дереве классификации , позволяет эффективно рассортировать горсть монет, а в общем случае применимо к широкому спектру задач классификации.
Изучение деревьев классификации не слишком распространено в вероятностно-статистическом распознавании образов, однако они широко используются в таких прикладных областях, как медицина (диагностика), программирование (анализ структуры данных), ботаника (классификация) и психология (теория принятия решений). Деревья классификации идеально приспособлены для графического представления, и поэтому сделанные на их основе выводы гораздо легче интерпретировать, чем если бы они были представлены только в числовой форме.