Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
voprosy_po_materialovedeniyu.docx
Скачиваний:
94
Добавлен:
27.04.2019
Размер:
254.59 Кб
Скачать

Модуль Юнга

Модуль Юнга, или модуль продольной деформации Е показывает критическое напряжение, которое может иметь структура материала при максимальной ее деформации до разрушения; имеет размерность напряжений (МПа).

Е =σр/ε;

Где: σр – критическое напряжение.

Пористость и модуль Юнга

Увеличение пористости структуры снижает ее модуль упругости, так как пористость представляет собой вторую или п-ю фазу с минимальным модулем упругости. Количественно эта зависимость представляется достаточно сложной, так как кроме суммарного объема пор необходимо учитывать их форму, непрерывность, извилистость и пр. Если принять, коэффициент Пуассона μ равным 0,3, то величина модуля упругости пористого тела в случае наличия замкнутых пор в непрерывной среде достаточно точно может быть определена по следующему эмпирическому уравнению:

Е = Ео (1-1,9П+0,9П2),

где Е и Ео — модули упругости пористого и абсолютно плотного тела;

П — относительная пористость, ед.

Если в пористых материалах пространство пор непрерывно, а твердые частицы могут смещаться относительно друг друга, то влияние пористости оказывается более значительным, чем в результате определения по приведенному уравнению.

Термическое расширение и модуль упругости

Кристаллические тела с высоким КТР имеют, как правило, низкий модуль упругости. С повышением температуры расстояние между атомами увеличивается также за счет термического расширения, и упругая составляющая деформации несколько снижается, уменьшая напряженное состояние и, как следствие, модуль упругости. При высоких температурах упругая составляющая понижается значительно. Наконец, она становится настолько малой, что тело теряет свои упругие свойства, т.е. переходит из состояния неустойчивого равновесия в равновесное состояние, в котором величина напряжения и силы межатомного взаимодействия зависят только от температуры.

В материаловедении такое состояние, называемое пиропластическим, и является необходимым условием для формования (ковка, црокат, горячее прессование, термопластичное формование и пр.) различных материалов и изделий.

Пластичность

Пластичность (от греч. р1аstcos — податливый) — свойство твердых тел и материалов деформироваться (изменять свою форму и размеры) без нарушения сплошности структуры под действием внешних сил и сохранять часть деформации после прекращения действия этих сил. Такие сохраненные (необратимые или остаточные) деформации часто называют пластическими.

Все реальные твердые тела, даже при малых деформациях, в большей или меньшей степени обладают пластическими свойствами, т.е. наряду с упругими деформациями также имеют место пластические. Соотношения между двумя противоположными видами деформации для различных материалов неодинаковы. В керамике это соотношение в пользу упругой деформации, в полимерах — в пользу пластической. По этому показателю условный ряд материалов с повышением доли пластической деформации может быть представлен следующим образом:

керамика → метал → высокомолекулярные соёдинения.

Резюмируя сказанное, отметим следующее:

- в момент нагружения (мгновенно) имеет место только упругая деформация (ОА);

- в период достижения упругой деформацией равновесного значения (АВ) имеет место как упругая, так и пластическая деформация,

- в период роста пластической деформации упругая составляющая остается неизменной (ВС);

- после снятия нагрузки исчезает упругая деформация (СД);

- (ДЕ) - пластическая деформация.

Разделение упругой и пластической деформаций, улучшение пластических свойств материала — достаточно сложные, но подчас необходимые операции при создании новых технологий переработки, обработки, формования различных материалов и получении материалов с заданными свойствами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]