- •Классификация строительных материалов. Связь состава, структуры и свойств.
- •2. Полимеры, методы получения полимеров. Достоинства и недостатки.
- •3. Определение нормальной густоты гипсового теста
- •4. Физические свойства строительных материалов.
- •5. Коррозия цементного камня. Её виды и методы защиты.
- •6. Определение выхода известкового теста ускоренным методом. Определение содержания в нём непогасившихся зерен
- •7. Гидрофизические свойства строительных материалов. Как изменяются свойства материалов при увлажнении.
- •8. Способы производства портландцемента. Достоинства и недостатки.
- •9. Определение скорости гашения извести.
- •10. Теплофизические свойства строительных материалов
- •11. Магнезиальные вяжущие и жидкое стекло
- •12.Определение нормальной густоты цементного теста.
- •13. Механические свойства строительных материалов.
- •14. Твердение портландцемента. Гидролиз и гидратация минералов портландцемента.
- •15. Определение сроков схватывания гипсового теста.
- •16. Природные каменные материалы. Классификация по генезису применения.
- •17. Гидравлические вяжущие вещества. Портландцемент. Процессы, протекающие при обжиге сырьевой смеси.
- •18.Определение температуры размягчения битумов.
- •19. Портландцемент. Сырьё и условия получения. Способы производства цемента.
- •20. Изверженные горные породы.
- •21. Определение предела прочности гипса при изгибе и сжатии.
- •22. Быстротвердеющие и высокопрочные цементы. Состав, свойства и области применения.
- •23.Виды изделий из природных каменных материалов
- •24.Определение равномерности изменения объема цемента
- •3.2. Проведение испытаний
- •25. Защита природного камня от разрушения в конструкциях зданий и сооружений (флюатирование).
- •26.Способы получения битумов, свойства, марки.
- •Определение пористости материала (общей, открытой).
- •7.1. Определение массы сухого образца
- •7.2. Насыщение образца
- •7.3. Проведение гидростатического взвешивания
- •7.4. Определение массы пропитанного образца
- •7.5. Определение плотности насыщающей жидкости
- •8.Обработка результатов
- •Минеральные вяжущие вещества. Классификация, применение. Воздушные вяжущие вещества.
- •Пластифицированный портландцемент. Состав, свойства и области применения.
- •30.Определение водопоглощения строительных материалов по массе и объему.
- •Метаморфические горные породы.
- •32.Воздушная известь (сырьё для производства, основные свойства, получение, область применения).
- •33. Определение сроков схватывания цементного теста.
- •35. Гипсовые вяжущие вещества (сырьё для производства, получение, основные свойства, применение).
- •35. Рулонные материалы на основе битума. Исходные материалы, свойства и области применения в строительстве.
- •36.Определение активных СаО и MgO в извести.
- •37. Шлакопортландцемент, состав, свойства и области применения.
- •38. Пластические массы, их состав. Влияния вида наполнителей на свойства пластмасс.
- •39. Определение вязкости битумов.
- •40. Теплоизоляционные материалы. Основные требования. Классификация. Способы поризации.
- •41. Сульфатостойкий портландцемент. Состав, свойства и области применения.
- •42. Определение растяжимости битумов.
- •43. Гидрофобный портландцемент. Состав, свойства и области применения.
- •44.Классификация пластмасс по применению. Виды строительных материалов из пластмасс.
- •46. Морозостойкость. Способы определения морозостойкости.
- •По мере повышения температуры в обжигаемом сырье происходят следующие изменения
- •Основное значение для цемента имеет трехкальциевый силикат
- •48.Определение марки цемента.
- •52. Деформативные свойства строительных материалов. Усадка. Набухание.
- •1. Деформативные свойства Основные понятия, термины, определения
- •Упругость
- •Константы упругости
- •Модуль Юнга
- •Пористость и модуль Юнга
- •Термическое расширение и модуль упругости
- •Пластичность
- •Причины и механизм образования пластических деформаций
- •Хрупкость
- •Эластичность
- •53. Расширяющиеся и безусадочные цементы. Напрягающий цемент. Состав, свойства и области применения.
- •54.Определение тонкости помола цемента
- •2. Определение тонкости помола цемента по удельной поверхности
- •55. Белый и цветные портландцементы. Состав, свойства и области применения.
- •56. Теплоизоляционные материалы, свойства, области применения. Основные современные теплоизоляционные материалы. Достоинства, недостатки. Основные свойства теплоизоляционных материалов
- •Область применения
- •57. Определение твердости битумов.
- •58.Пуццолановый портландцемент (портландцемент с минеральными добавками). Состав, свойства и области применения.
- •59. Лакокрасочные материалы, их применение в строительстве. Эмали, пигменты для краски.
- •60.Основные свойства битумов.
46. Морозостойкость. Способы определения морозостойкости.
Морозостойкость строительных материалов - способность насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без видимых признаков разрушения и без значительного снижения прочности. Морозостойкость измеряется количеством циклов замораживания и оттаивания, проводимых в лабораторных условиях.
Стандартизированный метод оценки морозостойкости бетона характеризуется числом циклов замораживания и оттаивания образцов при нормированных условиях испытания без существенного снижения прочности. Этот метод предложен в 1886 г. Н.А. Белелюбским и позволяет оценить стойкость бетона при некотором условном экстремальном режиме его работы: полном водонасыщении и непрерывном циклическом замораживании при общей длительности одного цикла 4,5-6,5 ч. При основном стандартном способе испытаний замораживание производится при -15 - -20°С на воздухе, а оттаивание при +20°С в воде. Для ускорения испытаний температуру замораживания снижают до -40 - -60°С, насыщают образцы водным солевым раствором, уменьшают их размеры и сокращают длительность циклов. Часто при испытании морозостойкости для определения фактического изменения прочности через заданное число циклов используют коэффициент морозостойкости Кмрз =Rмрз / Rк , где Rмрз - прочность бетона после принятого числа циклов испытаний; Rк - прочность контрольных образцов. Марка бетона по морозостойкости считается обеспеченной через требуемое число циклов, если Кмрз > 0,95. Наряду с определением морозостойкости путем прямого испытания прочности бетона через определенное число циклов замораживания и оттаивания применяют неразрушающие методы: определение скорости ультразвуковых волн; измерение динамического модуля упругости, а также остаточных деформаций (относительного удлинения образцов после испытания). Ультразвуковые испытания (Образец помещают в испытательную ванну, наполненную водой, и определяют время распространения в нем ультразвука поочередно по всем каналам измерения способом сквозного прозвучивания. Направление прозвучивания должно быть перпендикулярно к направлению укладки бетонной смеси) продолжаются до характерного перелома на кривой времени прохождения ультразвука от числа циклов (в логарифмическом масштабе). Этот перелом обусловлен образованием и развитием микротрещин в бетоне при его циклическом замораживании. Динамический модуль упругости измеряют прозвучиванием образцов продольными (реже поперечными) ультразвуковыми волнами. Снижение динамического модуля упругости на 40-45% свидетельствует об интенсивном морозном разрушении бетона. Дополнительным показателем стойкости бетона при морозном разрушении служат потери массы. Этот показатель более приемлем, когда деструкция бетона носит характер поверхностного шелушения, например, для дорожных бетонов. Потери массы при определении морозостойкости бетона ограничивают не более 5%. С. В. Шестоперов для экспрессной оценки степени повреждения материалов при попеременном замораживании и оттаивании предложил 5-балльную шкалу для растворов и 10-бальную для бетонов. Качество бетона на 1ой подготовительной стадии разрушения оценивается от 10 баллов, когда образцы не имеют никаких изменений, до 7 баллов, когда начинается шелушение граней и ребер и образуются лунки при наличии неморозостойких зерен заполнителей. На второй завершающей стадии разрушения состояние образцов по мере разрушения может быть охарактеризовано последовательно в убывающем порядке от 6 до 1 балла. Предложено также балльную оценку состояния образцов производить по нескольким критериям в зависимости от степени их влияния на развитие деструктивных процессов.
47. Химический и минералогический состав портландцемента и его влияние на основные свойства.
