Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shporyi_bez_20_bileta.docx
Скачиваний:
5
Добавлен:
25.04.2019
Размер:
497.01 Кб
Скачать
  1. Элемнтарные преобразования матриц. Приведение к ступенчатому виду.

Эл. Преобразования: 1) перестановка местами любых 2х строк или столбцов матрицы. 2) Умножение любой строки или столбца на любое действ. Число не равное 0. В результате преобразований получается новая матрица эквивалентная данной, причем их определители равны.

Метод гаусса, ранг матрицы. Матрица А порядка MxN называется ступенчатой, если для любых Аij=0 при i>j, для любых i>r, для любых Aii≠0 при i≤r и r≥1, r≤min(m,n) Amxn= rg=1 Любую прямоугольную матрицу можно привести к ступенчатому виду с помощью элементарных преобразований путем перестановки любых 2х строк, умножения любой строки на число или сложения любых 2х строк. Способ приведения любой прямоугольной матрицы к ступенчатой форме-метод Гаусса.

  1. Пространство арифметических векторов (линейное пространство).

Множество элементов x,y,z…. L называется линейным пространством, если для любых элементов x и y из L и для любых α R определены операции сложения элементов и умножение элементов на число такие что:

  1. X+Y=Z L(действит числа) 2) α*X=y L Примеры линейных пространств:

  1. Множество действ чисел 2) множество геометрических векторов 3) множество матриц одного порядка 4) множество многочленов какой-либо степени и т.д.

N-мерным арифметическим вектором называется упорядоченная совокупность n-чисел(действит) и записывается =(x1,x2,…,xn) Для арифметических векторов справедливы операции сложения векторов и умножение вектора на число и аналогичные операции с векторами. Геометрические векторы можно рассматривать, как трехмерные арифметические вектора, а пространство геометрических векторов можно рассматривать, как пространство 3х мерных арифметических векторов.

Рассмотрим линейное пространство L для него справедливы 8 аксиом, удовлетворяющие введенным в пространстве L операций сложения элементов и умножения элементов на число.

1) x+y=y+x 2) x+(y+z)=(x+y)+z 3) x+θ=x 4) x L, (-x) L 5) 1*x=x 6) 7) Элементы линейного пространства принято называть векторами. Пространство- векторное линейное пространство.

  1. Линейная зависимость. Базис. Линейное пространство в (линейного пространства)

Линейно зависимые и линейно независимые системы векторов. Опр. Система векторов (e1,e2,…ek ) L называется линейно зависимой, если найдутся числа α1,α2,…αk R действительные, причем не все равные 0, чтобы выполнялось равенство(α1e1+α2e2+…+αkek=0) Если же данное равенство выполняется, когда α1,α2,…αk=0 , тогда система векторов e1,e2,…ek называется линейно независимой. Опр. Если произвольный вектор X из L можно записать в виде равенства x=x1e1+x2e2+…+xken, где Xk R то говорят, что x является линейной комбинацией векторов (e1,e2,…ek ) L

Теорема необходимое и достаточное условие линейной зависимости системы векторов. Для того, чтобы система векторов (e1,e2,…ek ) L была линейно зависимой необходимо и достаточно, чтобы хотя бы 1 из векторов системы можно было бы представить в виде линейной комбинации остальных векторов этой системы. Доказательство. Необходимость. Пусть (e1,e2,…ek ) линейно зависимые. Докажем, что при этом хотя бы 1 из векторов можно представить в виде линейной комбинации остальных векторов этой системы. Из определения ЛЗ системы следует что Ǝ α1,α2,…αk R И все α≠0 α1e1+α2e2+…+αkek=0|÷αk, которая не равна 0. Достаточность: Пусть 1 из векоров системы можно представить в виде лин. Комбинации остальных векторов системы. Тогда докажем, что система линейно зависимая. Пусть для определения ek является линейной комбинацией остальных векторов системы. Тогда для него найдутся числа ek=

+(‑ 1)*ek= А значит αk=-1≠0 А это значит, что не все α1, α2, αk равны 0. Это значит что система линейно зависимая ч.т.д.

Свойства линейно зависимых и линейно независимых систем векторов:

1) Любая система содержащая линейно зависимая. 2) любая система содержащая 2 равных вектора линейно зависимая. 3) Любая система, содержащая 2 взаимно противоположных вектора линейно зависимая.

Базис линейного пространства. Опред. Линейное пространство L называется n-мерным, если в нем существует линейно-независимые системы n векторов, а любая система состоящая из n+1 вектора линейно зависимая. В этом случае число n называется размерностью линейного пространства L и обозначается dimL=n или . Базисом линейного пространства L называется любая система из n линейно-независимых векторов пространства L, причем любой вектор x принадлежащий пространству L может быть представлен в виде линейной комбинации базисных векторов, т.е. если система векторов (e1,e2,…,en) из L образует базис пространства L, то любой вектор x из L можно представить в виде =α1e1+ α2e2+ α3e3+….+ αnen ‑‑‑‑‑‑ является разложение вектора x по базису e1,e2,en, а действительные числа α1, α2,… αn называются координатами вектора x в базисе e1,e2,….,en.

Теорема в n мерном пространстве L существует базис из n векторов. Без док-ва. Рассмотрим арифметическое пространство e1(1,0,0,…,0) e2 (0,1,0,…0) e3 (0,0,1,..,0) en (0,0,0,…,0,1 ) Данная система линейно независимая, т.к. чтобы α1e1+ α2e2+ α3e3=0 равенство выполнялось каждое α должно быть равно 0. Причем любой вектор x принадлежащий пространству можно представить в виде линейной комбинации (e1,e2,…,en) т.к. вектор x=(x1,x2,x3…xn)=( x1e1,x2e2,x3e3,…,xnen) из определения операций сложения векторов и умножения вектора на число. Поэтому система векторов e1,e2,…,en образует базис в пространстве en, который будем называть естественным базисом пространства , а действительные числа x1,x2,…,xn координатами вектора x в естественном базисе.

Теорема о единственности разложения вектора по базису. Если система векторов e1,e2,…,en образует базис в пространстве может быть единственным образом представлен в виде x=( c1e1+c2e2+c3e3..+..cnen) где все с принадлежат R. Док-во от противного. Пусть существует 2 различных вектора x по базису en. x =( c1e1+c2e2+c3e3..+..cnen) x=( b1e1+b2e2+b3e3..+..bnen) bi=ci Причем все Сn=Bn, Приравниваем уравнения и получается (c1-b1)e1+(c2-b2)+..+(cn-bn)en=вектор 0. Но т.к. система векторов en образует базис в системе векторов то по определению базиса en, система линейно независимая следовательно равенство выполняется только тогда, когда система линейно зависимая, следовательно разложение вектора по базису единственно. Ч.т.д.

Подпространство линейного пространства Множество L элементов из называется линейным подпространством линейного пространства , если для любых векторов x,y L и для любых α R выполняется условие 1) x+y L 2)αx≤L Другими словами множество L из является линейным подпространством линейного пространства L, если множество L само является линейным пространством, относительно лин. Операций введенных в линейном пространстве Пример. Рассмотрим множество L, арифметических векторов пространства таких, что последняя координата векторов равна 0. Для любых x(x1,x2,…,xn-1,0) L . Для любых x,y L и для любых α R. 1) x+y=(x1+y1,x2+y2,…,xn-1+yn-1,0) 2)αx=( αx1, αx2,…, αxn-1,0) L Следовательно L-лин. Подпространство линейного пространства . Линейное пространство само является линейным подпространством линейного пространства .

Билет 9 Размерность линейного подпространства. Ранг матрицы.

Определение. Число k называется размерностью линейного подпространства L, если в L существует система из k линейно независимых векторов, а любые k+1 вектора — линейно зависимы. Обозначаем dimL=k.

Нетрудно доказать следующее утверждение.

Теорема. В k-мерном линейном подпространстве существует базис их k векторов.

Доказательство теоремы. Действительно, если dimL=k, то существует система из k линейно независимых векторов , а любая система из k+1 вектора линейно зависима, но тогда любой вектор линейно выражается через векторы : , т.е. — базис в L.

Справедливы также следующие утверждения (оставим их без доказательства).

Теорема. Любая упорядоченная система из k линейно независимых векторов k-мерного линейного подпространства является базисом в этом подпространстве.

Теорема. Размерность линейного подпространства равна числу векторов в базисе этого подпространства.

Отсюда следует: dim(Rn) = n.

Действительно, в пространстве Rn есть базис из n векторов — естественный базис в Rn.

Пример. Размерность линейного подпространства L арифметических векторов из Rn, у которых последние компоненты — нулевые, равна n1.

Действительно, векторы — очевидно, принадлежат L и линейно независимы. Покажем, что они образуют базис в L. Для произвольного вектора имеет место разложение справедливо: , т.е. векторы образуют базис в L. В этом базисе n-1 вектор, следовательно, dimL = n –1.

Тогда можно использовать другое определение базиса.

Определение. Любая упорядоченная линейно независимая система из k векторов k-мерного линейного подпространства L образует базис этого линейного подпространства L.

Это означает, что если dimL=k и арифметические векторы из L линейно независимы, то для любого существует единственный набор чисел таких, что .

Подпространство строк и подпространство столбцов прямоугольной матрицы

Рассмотрим прямоугольную матрицу Am, n, у которой m строк и n столбцов:

.

Её строки — —являются векторами из Rn,

А столбцы — — являются векторами из Rm.

Понятно, что множество строк матрицы Am, n , к которому добавили все строки, которые могут быть получены при элементарных преобразованиях матрицы (исключая транспонирование) — линейное подпространство в Rn.

А аналогично образованное множество столбцов — линейное подпространство в Rm.

Это означает, что мы можем говорить о линейной зависимости и о линейной независимости строк и столбцов матрицы, о размерности подпространства строк и подпространства столбцов матрицы, о базисах в соответствующих подпростьранствах.

Ранг матрицы

Определение. Ранг матрицы равен максимальному числу линейно независимых строк матрицы. Обозначаем RgA, rgA.

Т.е., если ранг матрицы равен r, то среди строк матрицы есть r линейно независимых строк, а любые r +1 строки — линейно зависимы.

Определение. Матрицы, имеющие одинаковый ранг, называются подобными.

Утверждение. Элементарные преобразования не меняют ранга матрицы.

Доказательство утверждения. Пусть Am, n — прямоугольная матрица и RgA = r. Не умаляя общности, положим — линейно независимы первые r строк: . Выполним элементарные преобразования строк матрицы. Обозначим полученную матрицу A, ее строки — .Очевидно, что перестановка строк или умножение строки на число не может повлиять на количество линейно независимых строк.

Выполним такое преобразование: к одной из строк матрицы прибавим другую, умноженную на отличное от нуля число.

Сначала выполним такое преобразование с первыми r линейно независимыми строками.

Например, . Тогда

Т.к. строки , то линейная комбинация равна нулю тогда и только тогда, когда . Отсюда немедленно следует, что и , т.е. первые r строк преобразованной матрицы — линейно независимы. Покажем, что любая система строк преобразованной матрицы линейно зависима, т.е. покажем, что строка линейно выражается через строки :

поскольку строки линейно зависимы, то

, а отсюда — и

Если же , то первые r строк преобразованной матрицы линейно независимы, а любые r­+1 линейно зависимы, т.к. любая строка преобразованной матрицы линейно выражается через ее первые ­r линейно независимых строк:

Утверждение доказано.

Теорема. Ранг матрицы равен числу ненулевых строк в ступенчатой форме матрицы.

Доказательство теоремы. Рассмотрим ступенчатую матрицу

т.е. , для всех , и для всех при . Важно понимать, то у ступенчатой матрицы первые r диагональных элементов отличны от нуля: .

Первые r строк этой матрицы линейно независимы. Действительно, приравняем к нулю линейную комбинацию этих строк: и вычислим ее в естественном базисе:

,

, …,

Равенство нулю линейной комбинации возможно тогда и только тогда, когда:

, поскольку ,

, поскольку и , …,

, поскольку , , …, и .

Итак, первые r ненулевые строки линейно независимы, а любые r+1 строки — линейно зависимы, т.к. линейно зависима любая система векторов, содержащая нулевой вектор.

Теорема доказана.

Отсюда — алгоритм вычисления ранга матрицы.

Приведем матрицу к ступенчатому виду (доказано, что это можно сделать гауссовым исключением), ранг исследуемой матрицы равен рангу ступенчатой матрицы (выше доказано, что элементарные преобразования не меняют ранга матрицы) , ранг ступенчатой матрицы равен числу ненулевых строк в ступенчатой форме матрицы (по только что доказанной теореме).

Билет № 10. Скалярное произведение в пространстве Rn, метрические соотношения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]