
- •1. Использование металлов в радиоэлектронных устройствах.
- •2. Жидкие кристаллы
- •3. Классификация веществ по магнитным свойствам Основные характеристики магнитных материалов
- •1. Электрические свойства металлов.
- •2. Сегнетоэлектрики, применение в электронике.
- •3. Магнитотвёрдые материалы Основные характеристики.
- •1. Технические показатели тепловых свойств металлов.
- •2. Собственные и примесные полупроводники. Виды носителей зарядов в полупроводниках.
- •3. Поляризация диэлектриков.
- •1. Механические свойства металлов.
- •2. Температурная зависимость удельной проводимости полупроводников.
- •3. Строение и основные свойства полимеров.
- •1. Совместимость металлов. Контактные явления и термоэлектродвижущая сила.
- •2. Электропроводность полупроводников в сильных электрических полях.
- •3. Оптические и лазерные материалы.
- •1. Причины возникновения коррозии металлов
- •2. Жидкие кристаллы. Основные электрические свойства.
- •3. Классификация магнитных материалов. Основные характеристики магнитных материалов.
- •1. Материалы высокой проводимости.
- •2. Пироэлектрики. Основные электрические свойства
- •3. Классификация материалов. Виды химической связи.
- •3) Металлическая связь
- •1. Сплавы высокого сопротивления.
- •2. Классификация диэлектриков. Основные характеристики диэлектриков.
- •3. Магнитомягкие материалы для постоянных и низкочастотных магнитных полей.
- •1. Электретные состояния в диэлектриках. Приведите примеры практического использования электретов.
- •2. Термоэлектрические эффекты в полупроводниках.
- •3. Неметаллические проводящие материалы.
- •1. Основные свойства полимеров. Особенности строения полимеров.
- •2. Сверхпроводники и их практическое использование.
- •3. Оптические и фотоэлектрические явления в полупроводниках.
- •1. Электрофизические параметры изоляционных материалов
- •2. Аморфные металлические сплавы
- •3. Классификация полупроводниковых материалов
- •1. Электрические свойства изоляционных материалов.
- •2. Особенности строения твёрдых тел. Элементы зонной теории твёрдого тела.
- •3. Магнитомягкие материалы для высокочастотных электромагнитных полей.
- •1. Композиционные порошковые пластмассы и слоистые пластики.
- •2. Сопротивление проводников на высоких частотах.
- •3. Процессы при намагничивании ферромагнетиков.
- •Билет № 13
- •1. Токи смещения и электропроводность диэлектриков..
- •2. Основные свойства германия и кремния. Практическое использование в радиоэлектронике.
- •3. Поведение ферримагнетиков в переменных магнитных полях.
- •2. Материалы высокой проводимости.
- •3. Магнитные материалы специализированного назначения.
- •Билет № 15
- •1) Пьезоэлектрические материалы и их электрофизические параметры.
- •2) Оптические и лазерные материалы.
- •3) Доменные структуры в тонких магнитных плёнках.
3. Магнитомягкие материалы для высокочастотных электромагнитных полей.
Требуется - высокая магнитная проницаемость, малая коэрцитивная сила, большая индукция насыщения (пропуск максимального магнитного потока через площадь). Это позволяет уменьшать размеры системы. Выбирают материалы с максимально малыми потерями на перемагничивание (высокое удельное сопротивление, разделение материала на отдельные изолированные куски-пластинки). Важное требование – стабильность свойств как во времени, так и ко внешним воздействиям (температура и механические напряжения). Материалы – электролитическое и карбонильное железо, кремнистая электротехническая сталь, низкокоэрцитивные сплавы (пермаллои – железоникелевые сплавы, чувствительны к механическим напряжениям – сердечники реле, трансформаторов, дроссели; альсиферы – тройные сплавы Fe, Ni, Al, хрупки – для магнитных экранов, корпусов (тонких).
Билет 12.
1. Композиционные порошковые пластмассы и слоистые пластики.
Поверхность пластиков обладает износоустойчивостью, влагостойкостью, устойчивостью к воздействию химических веществ. Наличие обширной гаммы декоров, позволяет гармонично вписывать пластики в любые элементы интерьера.
Производство пластиков складывается из следующих операций: пропитки наполнителя в ваннах или автоматических пропиточных машинах, сушки, сборки пакета и прессования или формования изделий сложной конфигурации с последующей термообработкой горячим воздухом или инфракрасными лучами. Поскольку слоистый пластик обычно приклеивают к жёсткому основанию, их тыльная сторона должна быть шероховатой. Для этого пластики обрабатывают на шероховочных станках с помощью бесконечной абразивной ленты.
Печатные платы (ПП) являются типовыми несущими конструкциями современной РЭА. Печатная плата представляет собой слоистую структуру, в состав которой входит диэлектрическое основание и печатные проводники (медная фольга). Основания ПП изготавливают из слоистых пластиков — композиций, состоящих из волокнистого листового наполнителя — бумаги, ткани, стеклоткани, пропитанных и склеенных между собой различными полимерными связующими. Слоистые пластики отличаются от других материалов тем, что применяемый наполнитель располагается параллельными слоями. Такая структура обеспечивает высокие механические характеристики, а использование полимерных связующих—достаточно высокое удельное электрическое сопротивление, электрическую прочность. Физико-механические свойства пластика определяет основной слой, который изготовляют из различных пластиков: 1) гетинакса (наполнитель - бумага), -2)текстолита (хлопчатобумажные ткани), 3) стеклотекстолита (стеклянные ткани).
ГЕТИНАКС Наиболее дешевый материала диэлектрических оснований— гетинакс — обладает высокими диэлектрическими свойствами, находит широкое применение в бытовой радиоаппаратуре. Его недостатком традиционно считается повышенное влагопоглощение. Выпускается гетинакс на основе ацетилированной бумаги, обладающей повышенной влагостойкостью и способной заменить стеклотекстолиты.
ТЕКСТОЛИТ обладает более высокой прочностью при сжатии и ударной вязкостью и поэтому используется также в качестве конструкционного материала, и его выпускают не только в виде листов, но и плит толщиной до 50 мм.
Стеклотекстолиты благодаря ценным свойствам наполнителя обладают наиболее высокой механической прочностью, теплостойкостью и минимальным влагопоглощением. Они имеют лучшую стабильность размеров, а электрические свойства остаются высокими и во влажной среде. Вледствие необычной твердости поверхности стеклотекстолиты износоустойчивы.