
- •1. Использование металлов в радиоэлектронных устройствах.
- •2. Жидкие кристаллы
- •3. Классификация веществ по магнитным свойствам Основные характеристики магнитных материалов
- •1. Электрические свойства металлов.
- •2. Сегнетоэлектрики, применение в электронике.
- •3. Магнитотвёрдые материалы Основные характеристики.
- •1. Технические показатели тепловых свойств металлов.
- •2. Собственные и примесные полупроводники. Виды носителей зарядов в полупроводниках.
- •3. Поляризация диэлектриков.
- •1. Механические свойства металлов.
- •2. Температурная зависимость удельной проводимости полупроводников.
- •3. Строение и основные свойства полимеров.
- •1. Совместимость металлов. Контактные явления и термоэлектродвижущая сила.
- •2. Электропроводность полупроводников в сильных электрических полях.
- •3. Оптические и лазерные материалы.
- •1. Причины возникновения коррозии металлов
- •2. Жидкие кристаллы. Основные электрические свойства.
- •3. Классификация магнитных материалов. Основные характеристики магнитных материалов.
- •1. Материалы высокой проводимости.
- •2. Пироэлектрики. Основные электрические свойства
- •3. Классификация материалов. Виды химической связи.
- •3) Металлическая связь
- •1. Сплавы высокого сопротивления.
- •2. Классификация диэлектриков. Основные характеристики диэлектриков.
- •3. Магнитомягкие материалы для постоянных и низкочастотных магнитных полей.
- •1. Электретные состояния в диэлектриках. Приведите примеры практического использования электретов.
- •2. Термоэлектрические эффекты в полупроводниках.
- •3. Неметаллические проводящие материалы.
- •1. Основные свойства полимеров. Особенности строения полимеров.
- •2. Сверхпроводники и их практическое использование.
- •3. Оптические и фотоэлектрические явления в полупроводниках.
- •1. Электрофизические параметры изоляционных материалов
- •2. Аморфные металлические сплавы
- •3. Классификация полупроводниковых материалов
- •1. Электрические свойства изоляционных материалов.
- •2. Особенности строения твёрдых тел. Элементы зонной теории твёрдого тела.
- •3. Магнитомягкие материалы для высокочастотных электромагнитных полей.
- •1. Композиционные порошковые пластмассы и слоистые пластики.
- •2. Сопротивление проводников на высоких частотах.
- •3. Процессы при намагничивании ферромагнетиков.
- •Билет № 13
- •1. Токи смещения и электропроводность диэлектриков..
- •2. Основные свойства германия и кремния. Практическое использование в радиоэлектронике.
- •3. Поведение ферримагнетиков в переменных магнитных полях.
- •2. Материалы высокой проводимости.
- •3. Магнитные материалы специализированного назначения.
- •Билет № 15
- •1) Пьезоэлектрические материалы и их электрофизические параметры.
- •2) Оптические и лазерные материалы.
- •3) Доменные структуры в тонких магнитных плёнках.
1. Материалы высокой проводимости.
К этой группе материалов принято относить проводники с удельным электрическим сопротивлением в нормальных условиях не более 0,1 мкОм*м. Наиболее распространенными среди этих материалов являются медь и алюминий.
Медь. Преимущества меди: 1) малое удельное сопротивление; 2) достаточно высокая механическая прочность; 3) стойкость к коррозии 4) хорошая обрабатываемость — медь прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до тысячных долей миллиметра; 5) относительная легкость пайки и сварки. Получение меди. Медь получают путем переработки сульфидных руд, чаще других встречающихся в природе. После подвергают электролитической очистке. Методом холодной протяжки получают твердую медь (маркируется ТМ). Если же медь подвергнуть отжигу, то получится мягкая медь (маркируется ММ), которая пластична.
Свойства меди. Удельная проводимость меди весьма чувствительна к наличию примесей, снижающие ее удельную проводимость. Недостатком меди является ее подверженность атмосферной коррозии с образованием окисных и сульфидных пленок. Значительное влияние на механические свойства меди оказывает водород. После водородного отжига твердость меди может уменьшиться в несколько раз.
Применение меди. Медь применяют в электротехнике для изготовления проводов, кабелей, шин распределительных устройств, обмоток трансформаторов, электрических машин, анодов.
Алюминий. Удельное сопротивление алюминия в 1,6 раза больше удельного сопротивления меди, но алюминий в 3,5 раза легче меди. Недостатком алюминия является его низкая механическая прочность. Отожженный алюминий в три раза менее прочен на разрыв, чем отожженная медь. Алюминий получают электролизом глинозема А13О3 в расплаве криолита Na3AlFe при температуре 950°С.
Разные примеси в различной степени снижают удельную проводимость алюминия.
Прокатку, протяжку и отжиг алюминия производят аналогично соответствующим операциям для меди. Из алюминия путем прокатки можно получать очень тонкую (6–7 мкм) фольгу, применяемую в качестве обкладок в бумажных конденсаторах, или пластины конденсаторов переменной емкости.
Алюминий активно окисляется и покрывается тонкой пленкой окиси с большим электрическим сопротивлением. Такая пленка предохраняет от коррозии. Пленки алюминия широко используют в интегральных микросхемах в качестве контактов и межсоединений.
2. Пироэлектрики. Основные электрические свойства
Пироэлектрики – кристаллические диэлектрики, обладающие спонтанной (самопроизвольной) поляризацией, т. е. поляризацией в отсутствии внешних воздействий. Пироэлектрики используются в технике в качестве индикаторов и приёмников излучений. Их действие основано на регистрации электрических сигналов, возникающих в пироэлектриках при изменении их температуры под действием излучения.
К пироэлектрикам относят диэлектрики, которые обладают сильно выраженным пироэлектрическим эффектом. Пироэлектрическим эффектом называют изменение спонтанной поляризованности диэлектриков при изменении температуры.
Качество
пироэлектрического материала принято
характеризовать приведенным физическим
параметром
где
–
диэлектрическая проницаемость; с
– удельная
объемная теплоемкость. Чем больше
значение Rв,
тем большую разность потенциалов можно
получить на образце при одной и той же
поглощаемой мощности.
Пироэлектрическими свойствами обладают некоторые линейные диэлектрики (например, турмалин, сульфат лития) и все сегнетоэлектрические материалы. Особенность линейных пироэлектриков состоит в том, что в них, в отличие от сегнетоэлектриков, направление спонтанной поляризованности не может изменяться с помощью внешнего электрического поля.
Значительный пироэффект в сегнетоэлектриках используется для создания тепловых датчиков и приемников лучистой энергии, предназначенных, в частности, для регистрации инфракрасного и СВЧ-излучения. Принцип действия пироэлектрических фотоприемников очень прост: лучистая энергия, попадая на зачерненную (поглощающую) поверхность сегнетоэлектрического кристалла, нагревает его.