
- •История логики
- •Предыстория логики
- •Логика в древнегреческой философии До Платона
- •Логика Платона
- •Логика Аристотеля
- •Логика стоиков
- •Логика в странах Востока Логика в Индии
- •Логика в Китае
- •Современная логика
- •Логика высказываний
- •]Основные понятия
- •Правила построения формул логики высказываний
- •Соглашения о скобках
- •Истинностное значение
- •Тождественно истинные формулы (тавтологии)
- •Исчисление высказываний
- •Логическая операция
- •Формальная логика
- •Математическая логика
- •Отрицание
- •Схемотехника
- •Конъюнкция
- •Булева алгебра
- •Многозначная логика
- •Классическая логика
- •Схемотехника
- •Дизъюнкция
- •Булева алгебра
- •Многозначная логика
- •Классическая логика
- •Схемотехника
- •Импликация
- •Булева логика
- •Классическая логика
- •Штрих Шеффера
- •Стрелка Пирса
- •Полином Жегалкина
- •Предпосылки
- •Cуществование и единственность представления (теорема Жегалкина)
- •Представление функции в виде полинома Жегалкина с помощью эквивалентных преобразований днф
- •С помощью эквивалентных преобразований сднф
- •Логика высказываний
- •Основные понятия
- •Правила построения формул логики высказываний
- •Соглашения о скобках
- •Истинностное значение
- •Тождественно истинные формулы (тавтологии)
- •Исчисление высказываний
- •Алгебра логики
- •Определение
- •Аксиомы
- •Логические операции
- •Свойства логических операций
- •История
- •Метод равносильных преобразований
- •Метод диаграмм Вейча.
- •Алгоритм построения таблицы истинности
- •Элементарная дизъюнкция
- •Элементарная конъюнкция
- •§ 1. Понятие формулы исчисления высказываний.
- •Исчисление высказываний
- •1.2.3.1 Правила подстановки
- •1.2.3.2. Правила введения и удаления логических связок
- •2.1 Алгебра предикатов
- •3 Законы алгебры предикатов
- •Квантор
- •Примеры
- •Введение в понятие
- •Кванторы в математической логике
- •Вложенные кванторы Свободные и связанные переменные
- •Операции над кванторами
- •Ограниченные кванторы История появления
- •Теория алгоритмов
- •Возникновение теории алгоритмов
- •Модели вычислений
- •Тезис Чёрча — Тьюринга и алгоритмически неразрешимые проблемы
- •Современное состояние теории алгоритмов
- •Анализ трудоёмкости алгоритмов
- •Классы сложности
- •Машина Тьюринга
- •Устройство машины Тьюринга
- •Описание машины Тьюринга
- •Пример машины Тьюринга
- •Полнота по Тьюрингу
- •Варианты машины Тьюринга
- •Машина Тьюринга, работающая на полубесконечной ленте
Современная логика
В конце XIX — начале XX веков были заложены основы т. н. математической, или символической, логики. Её суть заключается в том, что для обнаружения истинностного значения выражений естественного языка можно применять математические методы. Именно использование символической логики отличает современную логическую науку от традиционной.
Огромный вклад в развитие символической логики внесли такие учёные, как Дж. Буль, О. де Морган, Г. Фреге, Ч. Пирс и др. В XX веке математическая логика оформилась в качестве самостоятельной дисциплины в рамках логической науки.
Начало XX века ознаменовалось становлением идей неклассической логики, многие важные положения которой были предвосхищены и/или заложены Н. А. Васильевым и И. Е. Орловым.
В середине XX века развитие вычислительной техники привело к появлению логических элементов, логических блоков и устройств вычислительной техники, что было связано с дополнительной разработкой таких областей логики, как проблемы логического синтеза, логическое проектирование и логического моделирования логических устройств и средств вычислительной техники.
В 80-х годах XX века начались исследования в области искусственного интеллекта на базе языков и систем логического программирования. Началось и создание экспертных систем с использованием и развитием автоматического доказательства теорем, а также методов доказательного программирования для верификации алгоритмов и программ для ЭВМ.
В 80-ые годы начались также изменения в образовании. Появление персональных компьютеров в средних школах привело к созданию учебников информатики с изучением элементов математической логики для объяснения логических принципов работы логических схем и устройств вычислительной техники, а также принципов логического программирования для компьютеров пятого поколения и разработка учебников информатики с изучением языка исчисления предикатов для проектирования баз знаний.
2
Логика высказываний
Логика высказываний (или пропозициональная логика от англ. propositional logic) — это формальная теория, основным объектом которой служит понятие логического высказывания. С точки зрения выразительности, её можно охарактеризовать как классическую логикунулевого порядка. Логика высказываний является простейшей логикой, максимально близкой к человеческой логике неформальных рассуждений и известна ещё со времён античности.
]Основные понятия
Базовыми понятиями логики высказываний являются пропозициональная переменная — переменная, значением которой может быть логическое высказывание, — и (пропозициональная) формула, определяемая индуктивно следующим образом:
Если P — пропозициональная переменная, то P — формула.
Если A — формула, то
— формула.
Если A и B — формулы, то
,
и
— формулы.
Других соглашений нет.
Знаки
и
(отрицание, конъюнкция, дизъюнкция и импликация)
называются пропозициональными
связками. Подформулой называется
часть формулы, сама являющаяся
формулой. Собственной
подформулой называется
подформула, не совпадающая со всей
формулой.