Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
READ.doc
Скачиваний:
43
Добавлен:
24.04.2019
Размер:
1.83 Mб
Скачать

Алгебра логики

Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями[1]. Чаще всего предполагается (т. н. бинарная или двоичная логика, в отличие от, например, троичной логики), что высказывания могут быть только истинными или ложными.

Определение

Базовыми элементами, которыми оперирует алгебра логики, являются высказывания. Высказывания строятся над множеством {B,  ,  ,  , 0, 1}, где B — непустое множество, над элементами которого определены три операции:

 отрицание (унарная операция),

 конъюнкция (бинарная),

 дизъюнкция (бинарная),

а также константы — логический ноль 0 и логическая единица 1.

Дизъю́нкт — пропозициональная формула, являющаяся дизъюнкцией одного или более литералов (например  ). Конъюнкт — пропозициональная формула, являющаяся конъюнкцией одного или более литералов (например  ).

Аксиомы

Логические операции

Простейшим и наиболее широко применяемым примером такой алгебраической системы является множество B, состоящее всего из двух элементов:

B = { Ложь, Истина }

Как правило, в математических выражениях Ложь отождествляется с логическим нулём, а Истина — с логической единицей, а операции отрицания (НЕ), конъюнкции (И) и дизъюнкции (ИЛИ) определяются в привычном нам понимании. Легко показать, что на данном множестве B можно задать четыре унарные и шестнадцать бинарных отношений и все они могут быть получены через суперпозицию трёх выбранных операций.

Опираясь на этот математический инструментарий, логика высказываний изучает высказывания и предикаты. Также вводятся дополнительные операции, такие как эквивалентность   («тогда и только тогда, когда»), импликация   («следовательно»), сложение по модулю два  («исключающее или»), штрих Шеффера  , стрелка Пирса   и другие.

Логика высказываний послужила основным математическим инструментом при создании компьютеров. Она легко преобразуется в битовую логику: истинность высказывания обозначается одним битом (0 — ЛОЖЬ, 1 — ИСТИНА); тогда операция   приобретает смысл вычитания из единицы;   — немодульного сложения; & — умножения;   — равенства;   — в буквальном смысле сложения по модулю 2 (исключающее Или — XOR);   — непревосходства суммы над 1 (то есть A   B = (A + B) <= 1).

Впоследствии булева алгебра была обобщена от логики высказываний путём введения характерных для логики высказываний аксиом. Это позволило рассматривать, например, логику кубитов, тройственную логику (когда есть три варианта истинности высказывания: «истина», «ложь» и «не определено») и др.

Свойства логических операций

  1. Коммутативность: x y = y x,  {&,  }.

  2. Идемпотентность: x x = x,  {&,  }.

  3. Ассоциативность: (x y) z = x (y z),  {&,  }.

  4. Дистрибутивность конъюнкций и дизъюнкции относительно дизъюнкции, конъюнкции и суммы по модулю два соответственно:

    • ,

    • ,

    • .

  5. Законы де Мо́ргана:

    • ,

    • .

  6. Законы поглощения:

    • ,

    • .

  7. Другие (1):

    • .

    • .

    • .

    • .

    • .

  8. Другие (2):

    • .

    • .

    • .

  9. Другие (3) (Дополнение законов де Мо́ргана):

    • .

    • .

Существуют методы упрощения логической функции: например, Карта Карно, метод Куайна - Мак-Класки

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]