
- •История логики
- •Предыстория логики
- •Логика в древнегреческой философии До Платона
- •Логика Платона
- •Логика Аристотеля
- •Логика стоиков
- •Логика в странах Востока Логика в Индии
- •Логика в Китае
- •Современная логика
- •Логика высказываний
- •]Основные понятия
- •Правила построения формул логики высказываний
- •Соглашения о скобках
- •Истинностное значение
- •Тождественно истинные формулы (тавтологии)
- •Исчисление высказываний
- •Логическая операция
- •Формальная логика
- •Математическая логика
- •Отрицание
- •Схемотехника
- •Конъюнкция
- •Булева алгебра
- •Многозначная логика
- •Классическая логика
- •Схемотехника
- •Дизъюнкция
- •Булева алгебра
- •Многозначная логика
- •Классическая логика
- •Схемотехника
- •Импликация
- •Булева логика
- •Классическая логика
- •Штрих Шеффера
- •Стрелка Пирса
- •Полином Жегалкина
- •Предпосылки
- •Cуществование и единственность представления (теорема Жегалкина)
- •Представление функции в виде полинома Жегалкина с помощью эквивалентных преобразований днф
- •С помощью эквивалентных преобразований сднф
- •Логика высказываний
- •Основные понятия
- •Правила построения формул логики высказываний
- •Соглашения о скобках
- •Истинностное значение
- •Тождественно истинные формулы (тавтологии)
- •Исчисление высказываний
- •Алгебра логики
- •Определение
- •Аксиомы
- •Логические операции
- •Свойства логических операций
- •История
- •Метод равносильных преобразований
- •Метод диаграмм Вейча.
- •Алгоритм построения таблицы истинности
- •Элементарная дизъюнкция
- •Элементарная конъюнкция
- •§ 1. Понятие формулы исчисления высказываний.
- •Исчисление высказываний
- •1.2.3.1 Правила подстановки
- •1.2.3.2. Правила введения и удаления логических связок
- •2.1 Алгебра предикатов
- •3 Законы алгебры предикатов
- •Квантор
- •Примеры
- •Введение в понятие
- •Кванторы в математической логике
- •Вложенные кванторы Свободные и связанные переменные
- •Операции над кванторами
- •Ограниченные кванторы История появления
- •Теория алгоритмов
- •Возникновение теории алгоритмов
- •Модели вычислений
- •Тезис Чёрча — Тьюринга и алгоритмически неразрешимые проблемы
- •Современное состояние теории алгоритмов
- •Анализ трудоёмкости алгоритмов
- •Классы сложности
- •Машина Тьюринга
- •Устройство машины Тьюринга
- •Описание машины Тьюринга
- •Пример машины Тьюринга
- •Полнота по Тьюрингу
- •Варианты машины Тьюринга
- •Машина Тьюринга, работающая на полубесконечной ленте
Логика Платона
Из дошедших до нас сочинений знаменитого философа Платона (428—347) ни одно не относится к формальной логике, но они содержат важный вклад в развитие философской логики. Платон ставит три вопроса:
Что собственно можно считать истиной и ложью?
Какова природа связи между посылками в рассуждениях и заключениями?
Какова сущность понятий?
Первый вопрос появляется в диалоге Теэтет, где Платон отождествляет мысль или мнение с разговором или рассуждением (logos). Второй вопрос является результатом платоновской теории форм. Формы — это не вещи в обычном смысле или определённые идеи субъективного сознания, они соотносятся с тем, что позже назвали универсалиями, общие абстрактные имена, вместо которых можно подставлять имена конкретные. В диалогах Государство и Софист Платон предполагает необходимую связь между посылкой и следствием в рассуждениях в соответствии с необходимой связью между «формами». Третий вопрос о понятии. Многие диалоги Платона относятся к поиску некоторых важных понятий (справедливость, истина и благо); очевидно, на Платона оказала влияние значимость определений в математике. Форма, согласно Платону, лежит в основе каждого понятия, и общая сущность проявляется в частных вещах. Так понятие отражает высшую степень нашего понимания и основу всех валидных умозаключений. Взгляды Платона оказали сильное влияние на Аристотеля.
Логика Аристотеля
Логика Аристотеля, в частности его теория силлогизма, имела огромное влияние на западную мысль. Его труды по логике, называемые Органон, представляют самое раннее исследование формальной логики и началом традиции, преемственность которой прослеживается до современности. Точная датировка затруднительна, но предположительно порядок работ Аристотеля по логике следующий:
Категории, изучение десяти основных категорий.
Топика (с приложением О софистических опровержениях), диалектические дискуссии.
Об истолковании, анализ простых категорических суждений.
Первая аналитика, формальный анализ валидных форм рассуждений или силлогизмов.
Вторая аналитика, изучение научных доказательств.
Эти труды имеют выдающееся значение для истории логики. Аристотель был первым логиком, который попытался провести системный анализ логического синтаксиса. В Категориях он классифицирует все возможные виды того, что может быть субъектом и предикатом суждения. Это послужило основой его философского сочинения Метафизика. Он первый последовательно применяет законы противоречия и исключённого третьего. Он первый показывает принципы аргументации, лежащие в основе логических форм умозаключений, с помощью переменных (основоположник формальной логики); исследует отношение зависимости, которое характеризуют необходимые условия вывода и различает валидность этих отношений. В Первой аналитике содержится его изложение силлогистики и впервые в истории примененены три важнейших принципа: применение переменных, чисто формальное рассмотрение и использование аксиоматической системы. В сочинениях Топика и ''О софистических опровержениях также рассматривается неформальная логика (например, исследование логических ошибок).