Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
химия ответы.doc
Скачиваний:
33
Добавлен:
24.04.2019
Размер:
2 Mб
Скачать

Коррозия (по механизму)

Химическая

в среде неэлектролитов

непосредственное взаимодействие с окислителями

газовая (O2, SO2, Hal2)

жидкостная (нефть, бензин)

электрохимическая

в среде электролитов

сопровождается возникновением эл. тока

во влажном воздухе, в воде, почве

Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде. Пример — кислородная коррозия железа в воде: 4Fe + 2Н2О + ЗО2 = 2(Fe2O3•Н2О). Гидратированный оксид железа Fe2O3•Н2О и является тем, что называют ржавчиной.

Экзаменационный билет № 20

  1. Фазовые равновесия. Правило фаз Гиббса. Фазовая диаграмма однокомпонентной системы (на примере воды).

  2. Устойчивость коллоидных систем (агрегативная и кинетическая). Коагуляция. Факторы, вызывающие коагуляцию.

Ответ:

Большинство веществ могут существовать в одном из трех агрегатных состояний: газообразном (парообразном), жидком и твердом. В определенных условиях эти фазы способны переходить друг в друга, то есть всякую жидкость путем испарения можно перевести в газ, а охлаждением – в твердое состояние. Равновесия между различными фазами одной системы называют фазовыми, а описывают эти фазовые равновесия посредством фазовых диаграмм или диаграмм состояния. Фазовая диаграмма позволяет установить условия равновесия между числом фаз, числом компонентов и числом степеней свободы (вариантностью) системы.

Фаза (Ф) – гомогенная (однородная по химическому составу и термодинамическим свойствам) часть системы, отделенная от других частей поверхностью раздела. Так, два нерастворимых друг в друге твердых вещества, как и две несмешивающиеся жидкости, образуют две фазы.

Компоненты (К) – химически индивидуальные вещества, наименьшее число которых достаточно для образования фаз системы.

Число компонентов определяется количеством индивидуальных веществ в системе за вычетом числа возможных между ними обратимых взаимодействий. Например, система из трех индивидуальных веществ H2O, H2, O2 будет двухкомпонентной, поскольку для образования всех фаз достаточно любых двух веществ:

H2 = H2 + 1/2O2.

По числу компонентов системы делятся на одно-, двух-, трех- и многокомпонентные.

Степени свободы (С) – число параметров (температура, давление, состав системы), которые можно произвольно менять без изменения числа фаз в системе.

Правило фаз Гиббса: в изолированной равновесной системе число степеней свободы равно числу компонентов системы плюс два минус число фаз:

С = К + 2 – Ф

Устойчивость коллоидных систем.

Как мы уже отмечали, коллоидные системы с ТД точки зрения потенциально неустойчивы, т.к. имеется избыток поверхностной энергии. Чтобы система была более устойчивой, она должна избавиться от этой энергии. Устойчивость – это способность сохранять структуру. Агрегативная устойчивость объясняется, с одной стороны, наличием у коллоидных частиц одноименных зарядов, что мешает им соединяться в более крупные агрегаты. С другой – агрегативную устойчивость коллоидных систем можно объяснить тем, что вокруг коллоидных частиц могут образовываться тесно связанные с ними сольватные оболочки из молекул растворителя.

Кинетическая устойчивость зависит от способности дисперсированных частиц, не меняя степени своей дисперсности, противостоять действию силы тяжести или центробежной силы стремящихся вызвать выделение мицелл из золя.

Таким образом, агрегативная устойчивость – устойчивость к слипанию, а кинетическая устойчивость – устойчивость к оседанию.

В коллоидных системах действуют противоположные факторы: коллоидные частицы под действием силы тяжести стремятся осесть на дно сосуда (или всплыть), тогда как броуновское движение стремиться распределить частицы равномерно по всему объёму. В результате совместного действия этих двух факторов в системе устанавливается седиментационно-диффузионное равновесие.

(Свободное движение частиц под действием гравитационного поля называется седиментацией).

В системе с установившемся седиментационно-диффузионное равновесием частицы в броуновском движении должны непременно сталкиваться друг с другом. Очевидно, что система окажется устойчивой только в том случае, если эти столкновения будут упругими, иначе частицы начнут слипаться, укрупняться, равновесие нарушится, и дисперсная фаза выделится из раствора.

Процесс слипания частиц, сопровождающийся потерей седиментационной устойчивости, разрушением дисперсной системы и полным разделением фаз, называется коагуляцией. Т.е. коагуляция – слипание мицелл коллоида. Внешне коагуляция часто сопровождается появлением мути, изменением окраски коллоидных растворов и, наконец, образованием осадка.

Коагуляция может наступить при действии на коллоидную систему таких различных факторов по своей природе как:

  1. Длительный диализ (очистка коллоидных растворов от присутствующих в них молекулярно-ионных примесей растворенных в-в. Диализ основан на разнице в скоростях диффузии истинно- и коллоидно-дисперсных в-в через полупроницаемую перегородку.)

  2. Добавление растворов электролитов

  3. Добавление неэлектролитов

  4. Механическое воздействие (размешивание или встряхивание)

  5. Сильное охлаждение или нагревание

  6. Пропускание электрического тока

  7. Действие лучистой энергии.

Иногда коагуляция может наступить в результате «старения» золя.

Коагуляция лиофобных золей вызывается растворами всех электролитов. (Электролит имеет противоионы по отношению к гранулам). Явная коагуляция наступает, когда концентрация электролита начинает превышать минимальную величину, называемую порогом коагуляции – минимальная концентрация электролита, вызывающая быструю коагуляцию.

Во всех случаях причиной коагуляции бывает уменьшение связи мицелл с окружающей их дисперсионной средой.

При добавлении электролита – заряд коллоидной частицы нейтрализуется ионами противоположного (чем гранулы) знака, содержащимися в электролите. Кроме того, при этом происходит гидратация ионов электролита за счет молекул из дисперсионной среды. Равновесие нарушается и смещается в сторону пополнения воды в среде: , что приводит к ослаблению защитной гидратной оболочки частицы. Результатом является нарушение устойчивости золя, сопровождающиеся его коагуляцией.

Несмотря на ТД неустойчивость, коллоидные системы все же могут существовать довольно долго. Например, в Англии хранятся коллоидные растворы золота, приготовленные еще в начале девятнадцатого века М. Фарадеем. Почти за 200 лет они не изменили своих свойств, что свидетельствует о достаточно большой устойчивости этих систем.

Это связывается с тремя основными факторами:

  1. наличие заряда на частицах (электростатический фактор - довольно слабый фактор стабилизации, действует в системах с небольшой концентрацией дисперсной фазы)

  2. Наличие адсорбционных слоев

  3. расклинивающее давление (упругость сольватных оболочек вокруг каждой частицы в соответствующих условиях)

Коагуляция — явление слипания коллоидных частиц и выпадения их в осадок — наблюдается при нейтрализации зарядов этих частиц, когда в коллоидный раствор добавляют электролит. При этом раствор превращается в суспензию или гель. Некоторые органические коллоиды коагулируют при нагревании (клей, яичный белок) или при изменении кислотно-щелочной среды раствора.

Оглавление:

Билет №21

Билет №22

Билет №23

Билет №24

Билет №25