
- •Высказываниящ, операции над высказываниями: отрицание, «и», «или», «следует»
- •Построение отрицаний
- •Утверждение «следует», «обратное», «противоположное». Доказательство от противного, необходимое и достаточное условия
- •4. Множества, операции над множествами
- •5 Конструкция высказывания с кванторами существования и всеобщности, построение отрицаний
- •6. Координаты точки на прямой, расстояние между двумя точками, деление отрезка в данном соотношении
- •7. Координаты точки на плоскости, расстояние между двумя точками, деление отрезка в данном соотношении
- •8. График уравнения. Уравнение кривой. Примеры: график линейного уравнения, уравнение окружности
- •9. Уравнение прямой с заданным угловым коэффициентом, проходящей через заданную точку. Условие параллельности и перпендикулярности прямых.
- •10. Уравнение прямой, проходящей через две точки
- •11. Вектор на плоскости, координаты вектора, длина вектора. Операции над векторами. Орт вектора. Условие параллельности векторов
- •12. Скалярное произведение векторов, условие перпендикулярности
- •13. Координаты точки в трехмерном пространстве, векторы в трехмерном пространстве
- •14. Уравнение прямой и плоскости в трехмерном пространстве
- •15. Векторы. Линейная комбинация, линейная зависимость и независимость векторов
- •16. Матрицы. Сложение, умножение, умножение на вектор
- •17. Определитель второго порядка. Условие равенства нулю
- •18. Определитель третьего порядка. Вычисление разложением по столбцу, по строке и по правилу треугольника.
- •19. Решение систем линейных уравнений по правилу Крамера
- •20. Метод Гаусса решения систем линейных уравнений
- •21. Числовая прямая, модуль числа и его геометрический смысл, неравенство треугольника
- •22. Функция, область определения, график. Основные элементарные функции и их графики
- •23. Преобразования графиков функций – сдвиг, растяжение
- •24. Последовательность. Примеры
- •25. Предел переменной величины. Предел последовательности. Предел функции. Бесконечно малая величина, последовательность, функция.
- •26. Бесконечно большая функция, последовательность, величина
- •27. Теоремы об арифметических операциях над пределами
- •28. Сравнение бесконечно малых величин. Понятие главной части. Сравнение скорости роста степенной, показательной и логарифмической функций.
- •29. Определение производной функции в точки, ее геометрический смысл
- •30. Производные основных элементарных функций
- •31. Производная константы, суммы, произведения, отношения. Производная сложной функции.
- •32. Дифференциал функции в точке. Формула Тейлора
- •33. Применение формулы Тейлора к приблизительным вычислениям
- •34. Условие монотонности функции на промежутке
- •35. Условие экстремума функции в точке
- •36. Выпуклость функции на промежутке, условие выпуклости, точки перегиба
- •37. Схема построения графиков функций
- •38. Функция нескольких переменных. Частные производные. Необходимые условия экстремума функции нескольких переменных
- •39. Получение эмпирических формул по методу наименьших квадратов. Построение линейной эмпирической зависимости по методу наименьших квадратов.
- •40. Первообразная функции на промежутке
- •41. Неопределенный интеграл и его основные свойства
- •42. Метод разложения. Примеры
- •43. Метод подстановки. Примеры
- •44. Определенный интеграл. Определение, физическая и геометрическая
- •45. Формула Ньютона-Лейбница
- •46. Вычисление площадей с помощью определенного интеграла
- •47. Несобственные интегралы. Определение сходимости
- •48. Понятие о дифференциальных равнениях
- •50. Понятие о средних. Среднее арифметическое, квадратичное, геометрическое, гармоническое и их определяющие свойства. Неравенства между средними.
17. Определитель второго порядка. Условие равенства нулю
Пусть дана квадратная
таблица из четырех чисел
,
,
,
:
.
(1)
Число
называется
определителем второго порядка,
соответствующего таблице (1). Этот
определитель обозначается символом
;
соотвественно имеем
.
(2).
Числа , , , называются элементами определителя. Говорят, что элементы , лежат на главной диагонали определителя, , - на побочной. Таким образом, определитель второго порядка равен разности между произведениями элементов, лежащих на главной и побочной диагоналях.
Свойства определителей второго порядка:
1. Определитель не изменится, если его строки поменять местами с соответствующими столбцами.
2. При перестановке двух строк (или столбцов) определитель изменит знак на противоположный, сохраняя абсолютную величину
3. Определитель с двумя одинаковыми строками и столбцами равен нулю.
4. Общий множитель всех элементов строки или столбца можно выносить за знак определителя; если все элементы какой-то строки или столбца равны 0, то и определитель равен 0.
5. Если к элементам какой либо строки (или столбца) определителя прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и тоже число, то определитель не изменит своей величины.
18. Определитель третьего порядка. Вычисление разложением по столбцу, по строке и по правилу треугольника.
Пусть
дана квадратная таблица из девяти чисел
,
,
,
,
,
,
,
,
:
.
(1)
Определителем третьего порядка, соответствующим таблице (1), называется число, обозначаемое символом
и определяемое равенством
.
Для квадратной матрицы третьего порядка формула вычисления определителя разложением по 1-ой строке имеет вид:
=
-
+
.
По правилу треугольника сначала перемножаются и складываются элементы, соединенными на схеме линиями
т.е. получаем сумму произведений: a11a22a33+a12a23a31+a21a13a32.
Затем перемножаются и складываются элементы, соединенные на схеме
т.е. получаем другую сумму произведений a13a22a31+a12a21a33+a11a23a32. И, наконец, чтобы вычислить определитель, из первой суммы вычитают вторую. Тогда окончательно получаем формулу вычисления определителя третьего порядка:
D=(a11a22a33+a12a23a31+a21a13a32)-(a13a22a31+a12a21a33+a11a23a32).
По правилу Саррюса к определителю справа дописывают два первых столбца, а затем считают сумму произведений элементов определителя в одном направлении и из нее вычитают сумму произведений элементов в другом направлении (см. схему):
19. Решение систем линейных уравнений по правилу Крамера
Для системы n линейных уравнений с n неизвестными (над произвольным полем)
с определителем матрицы системы Δ, отличным от нуля, решение записывается в виде
(i-ый столбец матрицы системы заменяется столбцом свободных членов). В другой форме правило Крамера формулируется так: для любых коэффициентов c1, c2, …, cn справедливо равенство:
В этой форме формула Крамера справедлива без предположения, что Δ отлично от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца (определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы b1,b2,...,bn и x1,x2,...,xn, либо набор c1,c2,...,cn состоят не из элементов кольца коэффициентов системы, а какого-нибудь модуля над этим кольцом.