
- •Высказываниящ, операции над высказываниями: отрицание, «и», «или», «следует»
- •Построение отрицаний
- •Утверждение «следует», «обратное», «противоположное». Доказательство от противного, необходимое и достаточное условия
- •4. Множества, операции над множествами
- •5 Конструкция высказывания с кванторами существования и всеобщности, построение отрицаний
- •6. Координаты точки на прямой, расстояние между двумя точками, деление отрезка в данном соотношении
- •7. Координаты точки на плоскости, расстояние между двумя точками, деление отрезка в данном соотношении
- •8. График уравнения. Уравнение кривой. Примеры: график линейного уравнения, уравнение окружности
- •9. Уравнение прямой с заданным угловым коэффициентом, проходящей через заданную точку. Условие параллельности и перпендикулярности прямых.
- •10. Уравнение прямой, проходящей через две точки
- •11. Вектор на плоскости, координаты вектора, длина вектора. Операции над векторами. Орт вектора. Условие параллельности векторов
- •12. Скалярное произведение векторов, условие перпендикулярности
- •13. Координаты точки в трехмерном пространстве, векторы в трехмерном пространстве
- •14. Уравнение прямой и плоскости в трехмерном пространстве
- •15. Векторы. Линейная комбинация, линейная зависимость и независимость векторов
- •16. Матрицы. Сложение, умножение, умножение на вектор
- •17. Определитель второго порядка. Условие равенства нулю
- •18. Определитель третьего порядка. Вычисление разложением по столбцу, по строке и по правилу треугольника.
- •19. Решение систем линейных уравнений по правилу Крамера
- •20. Метод Гаусса решения систем линейных уравнений
- •21. Числовая прямая, модуль числа и его геометрический смысл, неравенство треугольника
- •22. Функция, область определения, график. Основные элементарные функции и их графики
- •23. Преобразования графиков функций – сдвиг, растяжение
- •24. Последовательность. Примеры
- •25. Предел переменной величины. Предел последовательности. Предел функции. Бесконечно малая величина, последовательность, функция.
- •26. Бесконечно большая функция, последовательность, величина
- •27. Теоремы об арифметических операциях над пределами
- •28. Сравнение бесконечно малых величин. Понятие главной части. Сравнение скорости роста степенной, показательной и логарифмической функций.
- •29. Определение производной функции в точки, ее геометрический смысл
- •30. Производные основных элементарных функций
- •31. Производная константы, суммы, произведения, отношения. Производная сложной функции.
- •32. Дифференциал функции в точке. Формула Тейлора
- •33. Применение формулы Тейлора к приблизительным вычислениям
- •34. Условие монотонности функции на промежутке
- •35. Условие экстремума функции в точке
- •36. Выпуклость функции на промежутке, условие выпуклости, точки перегиба
- •37. Схема построения графиков функций
- •38. Функция нескольких переменных. Частные производные. Необходимые условия экстремума функции нескольких переменных
- •39. Получение эмпирических формул по методу наименьших квадратов. Построение линейной эмпирической зависимости по методу наименьших квадратов.
- •40. Первообразная функции на промежутке
- •41. Неопределенный интеграл и его основные свойства
- •42. Метод разложения. Примеры
- •43. Метод подстановки. Примеры
- •44. Определенный интеграл. Определение, физическая и геометрическая
- •45. Формула Ньютона-Лейбница
- •46. Вычисление площадей с помощью определенного интеграла
- •47. Несобственные интегралы. Определение сходимости
- •48. Понятие о дифференциальных равнениях
- •50. Понятие о средних. Среднее арифметическое, квадратичное, геометрическое, гармоническое и их определяющие свойства. Неравенства между средними.
13. Координаты точки в трехмерном пространстве, векторы в трехмерном пространстве
Декартовыми прямоугольными координатами точки P в трехмерном пространстве называются взятые с определенным знаком расстояния (выраженные в единицах масштаба) этой точки до трех взаимно перпендикулярных координатных плоскостей или, что то же, проекции радиус-вектора r точки P на три взаимно перпендикулярные координатные оси.
Координаты x, y, z называются соответственно абсциссой, ординатой и аппликатой.
Вектор в трехмерном пространстве определяется тремя координатами p(x, y, z).
Для векторов трёхмерного пространства указаны правила сложения векторов и умножения их на действительные числа . В применении к любым векторам х, у, z и любым числам a, b эти правила удовлетворяют следующим условиям:
х + у = у + х (перестановочность сложения); 2) (х + у) + z = x + (y + z) (ассоциативность сложения); 3) имеется нулевой вектор 0 (или нуль-вектор), удовлетворяющий условию x + 0 = x: для любого вектора x; 4) для любого вектора х существует противоположный ему вектор у такой, что х + у = 0, 5) 1 · х = х, 6) a(bx) = (ab) х (ассоциативность умножения); 7) (a + b) х = aх + bх (распределительное свойство относительно числового множителя); 8) a(х + у) = aх + aу (распределительное свойство относительно векторного множителя).
14. Уравнение прямой и плоскости в трехмерном пространстве
Всякое уравнение первой степени относительно координат x, y, z
Ax + By + Cz +D = 0 (1)
задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (1), которое называется уравнением плоскости.
Вектор n (A, B, C ), ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (1) коэффициенты A, B, C одновременно не равны 0.
Особые случаи уравнения (3.1):
1. D = 0, Ax+By+Cz = 0 - плоскость проходит через начало координат.
2. C = 0, Ax+By+D = 0 - плоскость параллельна оси Oz.
3. C = D = 0, Ax +By = 0 - плоскость проходит через ось Oz.
4. B = C = 0, Ax + D = 0 - плоскость параллельна плоскости Oyz.
Уравнения координатных плоскостей: x = 0, y = 0, z = 0.
Прямая в пространстве может быть задана:
1) как линия пересечения двух плоскостей,т.е. системой уравнений:
A 1 x + B 1 y + C 1 z + D 1 = 0, A 2 x + B 2 y + C 2 z + D 2 = 0; (2)
2) двумя своими точками M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 ), тогда прямая, через них проходящая, задается уравнениями:
=
;
(3)
3) точкой M 1 (x 1, y 1, z 1 ), ей принадлежащей, и вектором a (m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями:
.
(4)
Уравнения (4) называются каноническими уравнениями прямой.
Вектор a называется направляющим вектором прямой.
Параметрические уравнения прямой получим, приравняв каждое из отношений (4) параметру t:
x = x 1 + mt , y = y 1 + nt , z = z 1 + р t . (5)
Решая систему (2) как систему линейных уравнений относительно неизвестных x и y, приходим к уравнениям прямой в проекциях или к приведенным уравнениям прямой :
x = mz + a, y = nz + b. (6)
От уравнений (6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения:
.
От общих уравнений (2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий вектор n = [ n 1, n 2 ], где n 1 (A 1, B 1, C 1 ) и n 2 (A 2, B 2, C 2 ) - нормальные векторы заданных плоскостей. Если один из знаменателей m, n или р в уравнениях (4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система
равносильна
системе
;
такая прямая перпендикулярна к оси Ох.
Система
равносильна
системе x = x 1,
y = y 1
; прямая параллельна оси Oz.