Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вышка.doc
Скачиваний:
10
Добавлен:
22.04.2019
Размер:
1.83 Mб
Скачать

50. Понятие о средних. Среднее арифметическое, квадратичное, геометрическое, гармоническое и их определяющие свойства. Неравенства между средними.

Средней величиной называют показатель, который характеризует обобщенное значение признака или группы признаков в исследуемой совокупности.

Введем следующие условные обозначения: - величины, для которых исчисляется средняя; - средняя, где черта сверху свидетельствует о том, что имеет место осреднение индивидуальных значений; - частота (повторяемость индивидуальных значений признака).

Различные средние выводятся из общей формулы степенной средней: при k = 1 - средняя арифметическая; k = -1 - средняя гармоническая; k = 0 - средняя геометрическая; k = -2 - средняя квадратическая.

Взвешенными средними называют величины, которые учитывают, что некоторые варианты значений признака могут иметь различную численность, в связи с чем каждый вариант приходится умножать на эту численность. Частоту f называют весом средней.

Средняя арифметическая - самый распространенный вид средней. Она используется, когда расчет осуществляется по несгруппированным статистическим данным, где нужно получить среднее слагаемое. Средняя арифметическая - это такое среднее значение признака, при получении которого сохраняется неизменным общий объем признака в совокупности.Формула средней арифметической (простой) имеет вид

При расчете средних величин отдельные значения признака, который осредняется, могут повторяться, поэтому расчет средней величины производится по сгруппированным данным. В этом случае речь идет об использовании средней арифметической взвешенной, которая имеет вид

Простая средняя гармоническая используется тогда, когда веса значений признака одинаковы. Ее формулу можно вывести из базовой формулы, подставив k = -1:

гармоническая взвешенная:

Средняя геометрическая. Чаще всего средняя геометрическая находит свое применение при определении средних темпов роста (средних коэффициентов роста), когда индивидуальные значения признака представлены в виде относительных величин. Она используется также, если необходимо найти среднюю между минимальным и максимальным значениями признака (например, между 100 и 1000000). Существуют формулы для простой и взвешенной средней геометрической.

Для простой средней геометрической

Для взвешенной средней геометрической

Средняя квадратическая величина. Основной сферой ее применения является измерение вариации признака в совокупности (расчет среднего квадратического отклонения). Простая средняя квадратическая: Взвешенная средняя квадратическая

t-критерий Стьюдента - общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на сравнении с распределением Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.

В случае с незначительно отличающимся размером выборки применяется упрощённая формула приближенных расчётов:

В случае, если размер выборки отличается значительно, применяется более сложная и точная формула:

Где M1,M2 - средние арифметические, σ1,σ2 - стандартные отклонения, а N1,N2 - размеры выборок.Количество степеней свободы рассчитывается как

Для вычисления эмпирического значения t-критерия в ситуации проверки гипотезы о различиях между двумя зависимыми выборками (например, двумя пробами одного и того же теста с временным интервалом) применяется следующая формула:

где Md - средняя разность значений, а σd - стандартное отклонение разностей.

Количество степеней свободы рассчитывается как

Одновыборочный t-критерий применяется для проверки гипотезы об отличии среднего значения от некоторого известного значения :

Количество степеней свободы рассчитывается как

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]