
- •Высказываниящ, операции над высказываниями: отрицание, «и», «или», «следует»
- •Построение отрицаний
- •Утверждение «следует», «обратное», «противоположное». Доказательство от противного, необходимое и достаточное условия
- •4. Множества, операции над множествами
- •5 Конструкция высказывания с кванторами существования и всеобщности, построение отрицаний
- •6. Координаты точки на прямой, расстояние между двумя точками, деление отрезка в данном соотношении
- •7. Координаты точки на плоскости, расстояние между двумя точками, деление отрезка в данном соотношении
- •8. График уравнения. Уравнение кривой. Примеры: график линейного уравнения, уравнение окружности
- •9. Уравнение прямой с заданным угловым коэффициентом, проходящей через заданную точку. Условие параллельности и перпендикулярности прямых.
- •10. Уравнение прямой, проходящей через две точки
- •11. Вектор на плоскости, координаты вектора, длина вектора. Операции над векторами. Орт вектора. Условие параллельности векторов
- •12. Скалярное произведение векторов, условие перпендикулярности
- •13. Координаты точки в трехмерном пространстве, векторы в трехмерном пространстве
- •14. Уравнение прямой и плоскости в трехмерном пространстве
- •15. Векторы. Линейная комбинация, линейная зависимость и независимость векторов
- •16. Матрицы. Сложение, умножение, умножение на вектор
- •17. Определитель второго порядка. Условие равенства нулю
- •18. Определитель третьего порядка. Вычисление разложением по столбцу, по строке и по правилу треугольника.
- •19. Решение систем линейных уравнений по правилу Крамера
- •20. Метод Гаусса решения систем линейных уравнений
- •21. Числовая прямая, модуль числа и его геометрический смысл, неравенство треугольника
- •22. Функция, область определения, график. Основные элементарные функции и их графики
- •23. Преобразования графиков функций – сдвиг, растяжение
- •24. Последовательность. Примеры
- •25. Предел переменной величины. Предел последовательности. Предел функции. Бесконечно малая величина, последовательность, функция.
- •26. Бесконечно большая функция, последовательность, величина
- •27. Теоремы об арифметических операциях над пределами
- •28. Сравнение бесконечно малых величин. Понятие главной части. Сравнение скорости роста степенной, показательной и логарифмической функций.
- •29. Определение производной функции в точки, ее геометрический смысл
- •30. Производные основных элементарных функций
- •31. Производная константы, суммы, произведения, отношения. Производная сложной функции.
- •32. Дифференциал функции в точке. Формула Тейлора
- •33. Применение формулы Тейлора к приблизительным вычислениям
- •34. Условие монотонности функции на промежутке
- •35. Условие экстремума функции в точке
- •36. Выпуклость функции на промежутке, условие выпуклости, точки перегиба
- •37. Схема построения графиков функций
- •38. Функция нескольких переменных. Частные производные. Необходимые условия экстремума функции нескольких переменных
- •39. Получение эмпирических формул по методу наименьших квадратов. Построение линейной эмпирической зависимости по методу наименьших квадратов.
- •40. Первообразная функции на промежутке
- •41. Неопределенный интеграл и его основные свойства
- •42. Метод разложения. Примеры
- •43. Метод подстановки. Примеры
- •44. Определенный интеграл. Определение, физическая и геометрическая
- •45. Формула Ньютона-Лейбница
- •46. Вычисление площадей с помощью определенного интеграла
- •47. Несобственные интегралы. Определение сходимости
- •48. Понятие о дифференциальных равнениях
- •50. Понятие о средних. Среднее арифметическое, квадратичное, геометрическое, гармоническое и их определяющие свойства. Неравенства между средними.
45. Формула Ньютона-Лейбница
Если функция f (x)
интегрируема на [a; b], то для любого
существует
интеграл
который называется интегралом с переменным верхним пределом.
Если функция f интегрируема на [a; b], то функция F (x) непрерывна на этом отрезке.
Если функция f
интегрируема на [a; b] и непрерывна в
то
функция F (x) дифференцируема в
причем
Если функция f
непрерывна на [a; b], то на этом отрезке
она имеет первообразную F вида
|
где C – постоянная. Всякая первообразная функции f на отрезке [a; b] удовлетворяет этой формуле.
Одним из основных результатов математического анализа является теорема Ньютона – Лейбница:
Пусть функция
f (x) непрерывна на [a; b], а F (x) –
какая-либо первообразная функции f на
этом отрезке. Тогда
Таким образом, для вычисления определенного интеграла нужно найти какую-либо первообразную F функции f, вычислить ее значения в точках a и b и найти разность F (b) – F (a).
Пусть f (x)
непрерывна на [a; b], g (t) имеет
непрерывную производную на [α; β],
Тогда
если a = g (α), b = g (β), то
справедлива формула замены переменной
в определенном интеграле:
|
Если функции u (x)
и v (x) имеют на [a; b] непрерывные
производные, то справедлива формула
интегрирования по частям:
|
46. Вычисление площадей с помощью определенного интеграла
Пусть f(x) определена на [a;b]. Разобьём [a;b]на части с несколькими произвольными точками a = x0 < x1 < x2 < xn = b Тогда говорят, что произведено разбиение RR отрезка [a;b] Далее выберем произв. точку , i = 0, Определённым интегралом от функции f(x) на отрезке [a;b]называется предел интегральных сумм ΘR при , если он существует независимо от разбиения R и выбора точек ξi, т.е. (1) Если существует (1), то функция f(x) называется интегрируемой на [a;b] – определение интеграла по Риману.
a – нижний предел.
b – верхний предел.
f(x) – подынтегральная функция.
λR - длина частичного отрезка.
σR – интегральная сумма от функции f(x) на [a;b] соответствующей разбиению R.
λR - максимальная длина част. отрезка.
Пусть на отрезке [а; b] задана непрерывная функция у = ƒ(х) ≥ 0. Фигура, ограниченная сверху графиком функции у = ƒ(х), снизу — осью Ох, сбоку — прямыми х = а и х = b, называется криволинейной трапецией. Найдем площадь этой трапеции.
Для этого отрезок [а; b] точками а=х0, х1, ..., b=хn (х0<x1<...<xn) paзобьем на n частичных отрезков [хо;х1], [х1;х2],...,[хn-1;хn]. (см. рис. 168). В каждом частичном отрезке [xi-1;xi] (i=1,2,..., n) возьмем произвольную точку ci и вычислим значение функции в ней, т. е. ƒ(ci).
Умножим значением функции ƒ(ci) на длину ∆xi=xi-xi-1 соответствующего частичного отрезка. Произведение ƒ(ci) • ∆xi равно площади прямоугольника с основанием ∆xi и высотой ƒ(ci). Сумма всех таких произведений
равна площади ступенчатой фигуры и приближенно равна площади S криволинейной трапеции:
С уменьшением всех величин Δхi точность приближения криволинейной трапеции ступенчатой фигурой и точность полученной формулы увеличиваются. Поэтому за точное значение площади S криволинейной трапеции принимается предел S, к которому стремится площадь ступенчатой фигуры Sn, когда n неограниченно возрастает так, что λ = max∆xi →0:
Итак, определенный интеграл от неотрицательной функции численно равен площади криволинейной трапеции.