
- •Механика Кинематика криволинейного движения
- •Скорость и ускорение. Нормальное и тангенсальное.
- •Полное ускорение
- •Кривизна траектории.
- •Вращательное движение
- •Радиус вектор
- •Угловая скорость, ускорение
- •Зависимость угла скорости и угла поворота от времени.
- •Поступательное вращательное движение
- •Динамика Законы Ньютона
- •Сила как мера взаимодействия тел.
- •Поле Сил Силовые поля
- •Электростатическое поле (поле неподвижных зарядов)
- •Гравитационное поле
- •Электромагнитное поле, постоянное во времени (поле постоянных токов)
- •Электромагнитное поле (общий случай)
- •Границы применения сил, классификация Прямые и обратные задачи механики. Начальные и граничные условия.
- •Энергия и работа. (теорема о Ек)
- •Потенциальная энергия, как энергия в-я.
- •Системы изолированные и неизолированные.
- •Диссипация энергии в диссипативной системе
- •Работа переменной силы.
- •Работа и энергия в поле тяготения
- •Общие характеристики гравитационного поля.
- •Напряженность и потенциал гравитационного поля.
- •Гравитационный потенциал и уравнения движения
- •Связь потенциальной энергии и силы
- •Потенциальные кривые и энергетические уровни
- •Импульс (II закон Ньютона с использованием импульса).
- •Закон сохранения импульса
- •Вращательное движение
- •Момент силы.
- •Момент импульса.
- •Момент инерции
- •Осевые моменты инерции некоторых тел
- •Теорема Штейнера
- •[Править]Вывод
- •[Править]Пример
- •Основное уравнение динамики вращательного движения
- •Зако́н сохране́ния моме́нта
- •Гироскопический эффект
- •Кинетическая энергия вращающегося тела
- •Работа при вращательном движении
- •Общий случай плоского движения
- •Основное свойство плоского движения.
- •Сравнительный характер поступательного и вращательного движения.
- •Колебательные движения
- •Смещение, скорость, ускорение, фаза, начальная фаза колебательного движения.
- •Энергия незатухающего колебательного движения Гармонический осциллятор
- •Сложение колебаний одного направления и биений
- •Сложение взаимно перпендикулярных колебаний. Фигура Лиссажу.
- •Математический маятник
- •Физический маятник(приведенная длина, точка качения и их св-ва, вывод формулы периода).
- •[Править]Вычисление
- •Затухающие колебания(логарифмический декремент, 4 подхода к определению добротности)
- •Вынужденные колебания
- •Консервативный гармонический осциллятор
- •II закон Ньютона к поступательному, вращательному, колебательному движению.
- •Теория относительности
- •Следствия из постулатов сто
- •1. Относительность одновременности событий
- •2. Относительность промежутков времени
- •3. Относительность расстояний
- •4. Сложение скоростей в сто
- •5. Закон Ньютона в релятивистской форме
- •6. Связь между энергией и массой
- •Молекулярная физика Адиабатический процесс
- •Физический смысл адиабатического процесса
- •Адиабата Пуассона
- •Политропный процесс
- •Теорема Больцмана
- •[Править]h-теорема
- •Молекулярная теплоемкость газа.
- •Теплоёмкость для различных состояний вещества
- •Термодинамика Первое начало термодинамики
- •[Править]Частные случаи
- •Работа газа при изопроцессах
- •Молярная и удельная теплоемкость газа.
- •II начало термодинамики
- •Ограничения
- •Обратимые и необратимые процессы
- •Квазистатический процесс Квазистатический процесс
- •Значение квазистатических процессов
- •Виды квазистатических процессов
- •Тепловые, холодильные машины.(их кпд) Цикл Карно.
- •Кпд тепловой машины Карно
- •Приведенная теплота и теорема Клаузиса
- •Энтропия
- •Изменение энтропии при квазистопическом процессе.
- •Энтропия в изолированной системе
- •Макро и микро состояния.
- •Термодинамическая вероятность состояний
- •Эргодическая гипотеза Статистическое толкование энтропии
- •Теорема Нерста
- •Параметрическая формула и распределение Больцмана
- •Распределение Максвелла Реальные газы
- •Уравнение Ван-дер-Ваальса
- •Уравнение состояния
- •Внутренняя энергия газа Ван-дер-Ваальса
- •Явление переноса
- •Эффективное сечение
- •Число столкновений и средняя длина свободного пробега молекул в газах
Затухающие колебания(логарифмический декремент, 4 подхода к определению добротности)
Затухающие
колебания —
колебания, энергия которых уменьшается
с течением времени. Бесконечно длящийся
процесс вида
в
природе невозможен. Свободные колебания
любого осциллятора рано или поздно
затухают и прекращаются. Поэтому на
практике обычно имеют дело с затухающими
колебаниями. Они характеризуются тем,
что амплитуда колебаний A является
убывающей функцией. Обычно затухание
происходит под действием сил сопротивления
среды, наиболее часто выражаемых линейной
зависимостью от скорости колебаний
или
её квадрата.
В акустике: затухание — уменьшение уровня сигнала до полной неслышимости.
Все реальные колебательные системы являются диссипативными. Энергия механических колебаний такой системы постепенно расходуется на работу против сил трения, поэтому свободные колебания всегда затухают - их амплитуда постепенно уменьшается. Во многих случаях, когда отсутствует сухое трение, в первом приближении можно считать, что при небольших скоростях движения силы, вызывающие затухание механических колебаниях, пропорциональны скорости. Эти силы, независимо от их происхождения, называют силами сопротивления.
|
(7.17) |
где
r - коэффициент сопротивления, v - скорость
движения. Запишем второй закон Ньютона
для затухающих колебаний тела вдоль
оси ОХ
или
|
(7.18) |
Перепишем
это уравнение в следующем виде:
и
обозначим:
где
представляет
ту частоту, с которой совершались бы
свободные колебания системы при
отсутствии сопротивления среды, т.е.
при r = 0. Эту частоту называют собственной
частотой колебания системы; β - коэффициент
затухания. Тогда
|
(7.19) |
Будем
искать решение уравнения (7.19) в виде
где
U - некоторая функция от t.
Продифференцируем
два раза это выражение по времени t и,
подставив значения первой и второй
производных в уравнение (7.19), получим
Решение
этого, уравнения существенным образом
зависит от знака коэффициента, стоящего
при U. Рассмотрим случай, когда этот
коэффициент положительный. Введем
обозначение
тогда
С вещественным ω решением этого уравнения,
как мы знаем, является функция
Таким
образом, в случае малого сопротивления
среды
,
решением уравнения (7.19) будет функция
|
(7.20) |
График
этой функции показан на рис. 7.8. Пунктирными
линиями показаны пределы, в которых
находится смещение колеблющейся точки.
Величину
называют
собственной циклической частотой
колебаний диссипативной системы.
Затухающие колебания представляют
собой непериодические колебания, т.к,
в них никогда не повторяются, например,
максимальные значения смещения, скорости
и ускорения. Величину
обычно
называют периодом затухающих колебаний,
правильнее - условным периодом затухающих
колебаний,
Натуральный логарифм отношения амплитуд смещений, следующих друг за другом через промежуток времени, равный периоду Т, называют логарифмическим декрементом затухания.
Обозначим через τ промежуток времени, за который амплитуда колебаний уменьшается в е раз. Тогда
откуда
Следовательно, коэффициент затухания есть физическая величина, обратная промежутку времени τ, в течение которого амплитуда убывает в е раз. Величина τ называется временем релаксации.
Пусть N - число колебаний, после которых амплитуда уменьшается в е раз, Тогда
Следовательно, логарифмический декремент затухания δ есть физическая величина, обратная числу колебаний N, по истечению которого амплитуда убывает в е раз
Определение добротности:
Добро́тность — характеристика колебательной системы, определяющая полосу резонанса и показывающая, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний.
Добротность обратно пропорциональна скорости затухания собственных колебаний в системе. То есть, чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания.
Общая формула для добротности любой колебательной системы:
,
где:
f0 — резонансная частота колебаний
W — энергия, запасённая в колебательной системе
Pd — рассеиваемая мощность.
Например, в электрической резонансной цепи энергия рассеивается из-за конечного сопротивления цепи, в кварцевом кристалле затухание колебаний обусловлено внутренним трением в кристалле, в объемных электромагнитных резонаторах теряется в стенках резонатора, в его материале и в элементах связи, в оптических резонаторах - на зеркалах.
Для последовательного Колебательного контура в RLC цепях, в котором все три элемента включены последовательно:
,
где R, L и C — сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.
Для параллельного контура, в котором индуктивность, емкость и сопротивление включены параллельно:
,
ЛАФЧХ колебательных звеньев с разной добротностью.
Для
электрической цепи гораздо проще
измерить амплитуду (ток или напряжение),
чем энергию или мощность. Поскольку
мощность и энергия пропорциональны
квадрату амплитуды осцилляции, полоса
на АЧХ будет
от
пика (примерно −3 дБ, а 1/2 это −6 дБ).
Поэтому чаще используется другое
эквивалентное определение добротности,
которое связывает ширину амплитудной
резонансной кривой Δω по
уровню
с
круговой частотой резонанса ω0 =
2πf0:
,
где: δ - коэффициент затухания, равный полуширине резонансной кривой, Ne — число колебаний за время релаксации.
Логарифмический декремент затухания: