Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Кинематика криволинейного движения.docx
Скачиваний:
81
Добавлен:
22.04.2019
Размер:
2.44 Mб
Скачать

Работа и энергия в поле тяготения

Определим работу, которую совершают силы поля тяготения при перемещении в поле материальной точки массой m. Вычислим, какую надо затратить работу для удаления тела массой m от Земли. На расстоянии R (рис. 1) на тело действует сила   

Рис.1

При перемещении этого тела на расстояние dR совершается работа  (1)  Знак минус появляется потому, что сила и перемещение в данном случае противоположны по направлению (рис. 1).  Если тело перемещать с расстояния R1 до R2, то работа  (2)  Из формулы (2) следует, что затраченная работа в поле тяготения не зависит от траектории перемещения, а зависит лишь от начального и конечного положения тела, т. е. силы тяготения действительно консервативны, а поле тяготения является потенциальным.  Работа, совершаемая консервативными силами, равна изменению потенциальной энергии системы, взятому со знаком минус, т. е.    Из формулы (2) получаем  (3)  Так как в формулы входит только разность потенциальных энергий в двух состояниях, то для удобства принимают потенциальную энергию при R2→∞ равной нулю (P2=0). Тогда (3) запишется в виде P1= -GmM/R1. Поскольку первую точку мы выбрали произвольно, то    Величина    является энергетической характеристикой поля тяготения и называется потенциалом. Потенциал поля тяготения φ - скалярная величина, которая определяется потенциальной энергией тела единичной массы в данной точке поля или работой по перемещению единичной массы из данной точки поля в бесконечность. Таким образом, потенциал поля тяготения, создаваемого телом массой М, равен (4)  где R - расстояние от этого тела до рассматриваемой точки.  Из формулы (4) следует, что геометрическое место точек с равными потенциалами образует сферическую поверхность (R=const). Такие поверхности, для которых потенциал постоянен, называются эквипотенциальными.  Исследуем взаимосвязь между потенциалом φ поля тяготения и его напряженностью g. Из выражений (1) и (4) вытекает, что элементарная работа dA, совершаемая силами поля при малом перемещении тела массой m, равна    С другой стороны, dA=Fdl (dl - элементарное перемещение). Учитывая (24.1), полу¬чаем, что dA=mgdl, т. е. mgdl= -mdφ, или    Величина dφ/dl характеризует изменение потенциала на единицу длины в направлении перемещения в поле тяготения. Можно показать, что   (5)  где   - градиент скаляра φ. Знак минус в формуле (5) показывает, что вектор напряженности g направлен в сторону убывания потенциала.  В качестве частного примера, исходя из представлений теории тяготения, рассмотрим потенциальную энергию тела, находящегося на высоте h относительно Земли:    где R0 - радиус Земли. Так как   и    то, учитывая условие h<<R0, получаем   

Общие характеристики гравитационного поля.

Гравитацио́нное по́ле, или по́ле тяготе́ния — физическое поле, через которое осуществляется гравитационное взаимодействие.

В рамках классической физики гравитационное взаимодействие описывается «законом всемирного тяготения» Ньютона, согласно которому сила гравитационного притяжения между двумя материальными точками с массами m1 и m2 пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними:

Здесь G — гравитационная постоянная, приблизительно равная   м³/(кг с²), R — расстояние между точками.

Для расчёта поля в более сложных случаях, когда тяготеющие массы нельзя считать материальными точками, можно воспользоваться тем фактом, что поле ньютоновского тяготения потенциально. Если обозначить плотность вещества ρ, то потенциал поля φ удовлетворяет уравнению Пуассона:

Δφ = − 4πGρ