
- •Тест №3
- •Тест №4
- •Тест №5
- •Тест №6
- •Тест №7
- •Тест №8
- •Тест №9
- •Тест №10
- •Тест №11
- •Тест №12
- •Тест №13
- •Тест №14
- •Тест №15
- •Тест №16
- •Тест №17
- •Тест №18
- •Тест №19
- •Тест №20
- •Тест №21
- •Тест №22
- •Тест №23
- •Тест №24
- •Тест №25
- •Тест №26
- •Тест №27
- •Тест №28
- •Тест №29
- •Тест №30
- •Тест №31
- •Тест №32
- •Тест №33
- •Тест №34
- •Тест №35
- •Тест №36
- •Тест №37
- •Тест №38
- •Тест №39
- •Тест №40
- •Тест №41
- •Тест №42
- •Тест №43
- •Тест №44
- •Тест №45
- •Тест №46
- •Тест №47
Тест №27
ЗАДАНИЕ N 1 сообщить об ошибке Тема: Ранг матрицы Ранг матрицы равен двум, если …
|
|
|
минор второго порядка не равен нулю |
|
|
|
значения и равны нулю |
|
|
|
все миноры первого порядка равны нулю |
|
|
|
определитель матрицы равен двум |
Решение: Рангом матрицы называется наибольший из порядков ее миноров, не равных нулю.
ЗАДАНИЕ N 2 сообщить об ошибке Тема: Линейные операции над матрицами Дана матрица Если где – единичная матрица того же размера, что и матрица , то матрица равна …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ЗАДАНИЕ N 3 сообщить об ошибке Тема: Вычисление определителей Определитель равен …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ЗАДАНИЕ N 4 сообщить об ошибке Тема: Умножение матриц Даны матрицы и . Тогда матрица имеет вид …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ЗАДАНИЕ N 5 сообщить об ошибке Тема: Системы линейных уравнений Единственное решение имеет однородная система линейных алгебраических уравнений …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Решение: Однородная система линейных алгебраических уравнений имеет одно единственное решение, если ее определитель не равен нулю. 1) Из системы , получим так как столбцы пропорциональны. 2) Из системы , получим так как строки пропорциональны. 3) Из системы , получим так как строки пропорциональны. 4). Из системы , получим следовательно, система имеет одно единственное решение.
ЗАДАНИЕ N 6 сообщить об ошибке Тема: Обратная матрица Дана матрицы . Тогда матрица равна …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Решение: Транспонируем данную матрицу Обратная матрица имеет вид Вычислим Тогда
ЗАДАНИЕ N 7 сообщить об ошибке Тема: Полярные координаты на плоскости Точка задана в прямоугольной системе координат. Тогда ее полярные координаты равны …
|
|
|
, |
|
|
|
, |
|
|
|
, |
|
|
|
, |
Решение: Полярные координаты точки , заданной прямоугольными координатами находятся по формулам , . То есть , , учитывая, что точка лежит во второй четверти.
ЗАДАНИЕ N 8 сообщить об ошибке Тема: Прямая на плоскости Прямая проходит через точки и . Тогда общее уравнение этой прямой имеет вид …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ЗАДАНИЕ N 9 сообщить об ошибке Тема: Прямая и плоскость в пространстве Параметрические уравнения прямой, проходящей через точку параллельно вектору имеют вид …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Решение: Параметрические уравнения прямой, проходящей через точку с направляющим вектором , имеют вид Тогда или
ЗАДАНИЕ N 10 сообщить об ошибке Тема: Поверхности второго порядка Даны уравнения поверхностей второго порядка: А) B) C) D) Тогда однополостный гиперболоид задается уравнением …
|
|
|
D |
|
|
|
A |
|
|
|
C |
|
|
|
B |