
- •Тест №3
- •Тест №4
- •Тест №5
- •Тест №6
- •Тест №7
- •Тест №8
- •Тест №9
- •Тест №10
- •Тест №11
- •Тест №12
- •Тест №13
- •Тест №14
- •Тест №15
- •Тест №16
- •Тест №17
- •Тест №18
- •Тест №19
- •Тест №20
- •Тест №21
- •Тест №22
- •Тест №23
- •Тест №24
- •Тест №25
- •Тест №26
- •Тест №27
- •Тест №28
- •Тест №29
- •Тест №30
- •Тест №31
- •Тест №32
- •Тест №33
- •Тест №34
- •Тест №35
- •Тест №36
- •Тест №37
- •Тест №38
- •Тест №39
- •Тест №40
- •Тест №41
- •Тест №42
- •Тест №43
- •Тест №44
- •Тест №45
- •Тест №46
- •Тест №47
Тест №24
ЗАДАНИЕ N 1 сообщить об ошибке Тема: Обратная матрица Обратная матрица существует для матрицы …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ЗАДАНИЕ N 2 сообщить об ошибке Тема: Умножение матриц Матрица , где и . Тогда элемент равен …
|
|
|
17 |
|
|
|
5 |
|
|
|
14 |
|
|
|
– 10 |
Решение: Произведением матрицы размера на матрицу размера называется матрица размера , элемент которой равен сумме произведений соответственных элементов i-й строки матрицы и j-го столбца матрицы . Тогда .
ЗАДАНИЕ N 3 сообщить об ошибке Тема: Вычисление определителей Корень уравнения равен …
|
|
|
|
|
|
|
3 |
|
|
|
– |
|
|
|
–1 |
Решение: Определитель второго порядка вычисляется по формуле: . Тогда По условию задачи определитель должен равняться 0, то есть Следовательно,
ЗАДАНИЕ N 4 сообщить об ошибке Тема: Системы линейных уравнений Единственное решение имеет однородная система линейных алгебраических уравнений …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Решение: Однородная система линейных алгебраических уравнений имеет одно единственное решение, если ее определитель не равен нулю. 1) Из системы , получим так как столбцы пропорциональны. 2) Из системы , получим так как строки пропорциональны. 3) Из системы , получим так как строки пропорциональны. 4). Из системы , получим следовательно, система имеет одно единственное решение.
ЗАДАНИЕ N 5 сообщить об ошибке Тема: Ранг матрицы Ранг матрицы равен двум, если …
|
|
|
минор второго порядка не равен нулю |
|
|
|
значения и равны нулю |
|
|
|
все миноры первого порядка равны нулю |
|
|
|
определитель матрицы равен двум |
Решение: Рангом матрицы называется наибольший из порядков ее миноров, не равных нулю.
ЗАДАНИЕ N 6 сообщить об ошибке Тема: Линейные операции над матрицами Дана матрица Если то матрица равна …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Решение: При умножении матрицы на число каждый элемент матрицы умножается на данное число. При сложении или вычитании матриц одинаковой размерности соответствующие элементы матриц складываются или вычитаются друг из друга. В данном случае:
ЗАДАНИЕ N 7 сообщить об ошибке Тема: Полярные координаты на плоскости В полярной системе координат даны точки и . Тогда полярные координаты середины отрезка равны …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ЗАДАНИЕ N 8 сообщить об ошибке Тема: Поверхности второго порядка Уравнение сферы с центром в точке и радиусом имеет вид …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ЗАДАНИЕ N 9 сообщить об ошибке Тема: Прямая и плоскость в пространстве Даны точки и . Тогда уравнение плоскости, проходящей через точку перпендикулярно вектору , имеет вид …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ЗАДАНИЕ N 10 сообщить об ошибке Тема: Прямая на плоскости Угловой коэффициент прямой, заданной уравнением , равен …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Решение: Выразим из уравнения переменную , а именно . Тогда угловой коэффициент .