 
        
        - •1).Числовые ряды
- •2).Признаки сх-ти неотриц.Рядов
- •3).Знакоперем.Ряды.
- •4).Функ-ные ряды
- •5).Степ.Ряды
- •6).Радиус сх-ти, св-ва степ.Рядов
- •19).Наибол.И наим.Знач-е ф-ции
- •23)Опр. И св-ва тройн. Интегр
- •26).Цилиндр. И сферич. Корд
- •27).Опр. И св-ва крив.Инт.1-го рода
- •29).Незав. Крив.Инт.2-го рода
- •30).Поверхн.Интегр
- •1).Поверх.Интег.2-го рода
- •35).Геометрич. И физич. Прилож.
- •36).Обыкнов.Диф-е ур-я
- •38).Однор. Ур-я 1-го порядка
- •39).Линей. Диф-е ур-я 1-го порядка
- •40).Метод вариации постоян
- •46).Определитель Вронского
- •47).Однородн. Диф-е ур-я 2-го порядка
- •48).Неоднор. Лин-е диф-е ур-е 2-го порядка
- •49).Неоднор. Диф-е ур-я 2-го порядка с постоян. Коэффиц.
- •50).Сист. Линейн.Диф-ных ур-ний с пост. Коэфф
- •51).Понятие об устойчивости решения
29).Незав. Крив.Инт.2-го рода
Утверждение 1 Выражение P(x,y)dx+Q(x,y)dy является полным дифференциалом некоторой фун-ии U(x,y) тогда и т.д. dP/dY=dQ/dX Док-во P(x,y)dx+Q(x,y)dy – полный дифференциал P(x,y)dx+Q(x,y)dy=dU(x,y)=dU/dX*dx+dU/dY*dy dU/dX=P(x,y) (1) dU/dY=Q(x,y) (2) Надо док-ть что dP/dY=dQ/dX
Равенство(1) дифференцируем по у получаем dP/dY=d2U/dYdX Равенство(2) дифференцируем по х получаем dQ/dX=d2U/dXdY т.к. смешанные производные равны то dP/dY=dQ/dX. В ходе док-ва получается U(x,y)=
 (x0,y0)-фиксированая
точка Утверждение 2 Криволинейный
интеграл 2 рода
(x0,y0)-фиксированая
точка Утверждение 2 Криволинейный
интеграл 2 рода 
 не зависит от пути интегрирования, т.е.
от формы кривой соединяющей т.А и В
dP/dY=dQ/dX
 Замечание Если С-замкнутый контур то
не зависит от пути интегрирования, т.е.
от формы кривой соединяющей т.А и В
dP/dY=dQ/dX
 Замечание Если С-замкнутый контур то
 ,
если вы-полнено утверждение 2
,
если вы-полнено утверждение 2
Теорема Если Д-замкнутая плоская область ограниченная контуром Г функции P(x,y), Q(x,y) непрерывны в этой области вместе со своими частными производными dP/dY,dQ/dX то имеет место равенство
 
 ,где
граница Г обходится против часовой
стрелки.
,где
граница Г обходится против часовой
стрелки.
Пример Рассмотрим
формулу площади: 
 Положим
P(x,y)=-y
Q(x,y)=x
dP/dY=-1
dQ/dX=1
Подставим в формулу Грина
Положим
P(x,y)=-y
Q(x,y)=x
dP/dY=-1
dQ/dX=1
Подставим в формулу Грина 
 
 
2S=1/2 30
30
30).Поверхн.Интегр
. I. Рассмотрим
F(x,y,z)
– непрерывная фун-я Z=f(x,y)
задает поверхность (x,y)εD – область в
плоскости xoy
                                            Z=f(x,y)
   Разобьем S
на элементы Si
   i
= 1…n
(ai,
bi,
ci)
ε
Si
     ∆δi
– площадь Si
 Составим сумму 
 ∆Si
    ∆Si
Опр. Если 
 
 ∆δi
, не зависящей от
∆δi
, не зависящей от
Называют поверхностным
интегралом первого рода и обозначают.
 
Геометрический
смысл:   
 - площадь поверхности S
- площадь поверхности S
Физический смысл:
Если F(x,y,z) –
плотность, распределенная по поверхности
S, то 
 - масса поверхности S.
- масса поверхности S.
1).Поверх.Интег.2-го рода
S+ - сторона поверхности,которой соответствует нормаль n.
S-- - сторона поверхности которой соответствует нормаль -n.
∆ Пi
– прямая Si
на xoy
 Опр. Предел суммы 
 при мелкости разбиения, стремящейся к
нулю, называется поверхностным интегралом
2-ого рода
при мелкости разбиения, стремящейся к
нулю, называется поверхностным интегралом
2-ого рода 
 
Аналогично:  Если
рассмотреть проекции на xoz: 
 проекция на yoz:
 проекция на yoz: 
 
Полный поверхностный интеграл:
 
 
32).Эл-ты теории поля
Будем называть числовые функции скалярными полями а векторные – векторными полями
Рассмотрим U(x,y,z) в области U
Опр. Градиентом
называется вектор, обозначается gradU =
( ,
,
 
 ,
,
 )
)
Опр: Дивергенцией
векторного поля 
 называется скалярное поле: обозначается
div
называется скалярное поле: обозначается
div 
 =
=
 +
+ +
+ 
Опр. Ротором (вихрем) векторного поля (P,Q,R) называется векторное поле:
rot 
=( –
– ;
; –
– ;
; –
– )
)
Опр.Циркуляцей
векторного поля 
(P,Q,R)
по замкнутому контуру Г, называется
криволинейный интеграл  
 
Опр. Потоком
векторного поля ā=(P,Q,R) через поверхность
δ называются поверхностный интеграл 33).Ф-лы Стокса
33).Ф-лы Стокса
Формула Стокса
Если функция P(х,у,z), Q(x,y,z), R(x,y,z) непрерывна дифференцируемы в окрестности поверхности δ , то имеет место равенство
 Г-
граница δ
Г-
граница δ
В координатной
форме:
 
 
формула Стока позволяет вычислять криволинейный интеграл через поверхностный.
Формула Остроградского-Гаусса
Σ-замкнутая область
в пространстве, ограниченная поверхностью
δ. Фун-и P,Q,R непрерывно дифференцирована
в области ς. Тогда имеет место равенство
 
 В координатной
форме
 
Формула Гаусса – Остроградского позволяет вычислять поверхностный интеграл через тройной
. 34).Соленоид. и потенц. вект. поля
Соленоидальные и потенциальные век. поля.
Опр.
Векторное поле ā называется соленоидальным
в области ς, если 
 ограниченной
поверхность равен нулю, т.е.
ограниченной
поверхность равен нулю, т.е.
 
теорема: Для того чтобы векторное поле ā являлось соленоидальным необходимо и достаточно, чтобы div ā .
Док-во: следует из формулы Гаусса-Остроградского.
Опр. Если существует скалярное поле U, для которого ā явл-ся поле градиентов, т.е. ā▼U, то фун-я U называется потенциальным.
Опр. Векторное поле, для которого существует потенциал называется потенциальным.
Теорема:
Для того чтобы векторное поле ā было
потенциальным в области U необходимо и
достаточно чтобы циркуляция по любому
замкнутому контуру лежащему в этой
области была равна нулю, т.е.
 
Опр. Область называется односвязной если любой замкнутый контур в этой области можно стянуть непрерывной информацией. (например круг)
Теорема
Векторное поле ā явл-ся потенциальным
в односвязной области когда
ротор вектора равен нулю rot ā = 0
когда
ротор вектора равен нулю rot ā = 0
Док-во следует из формулы Стокса (Потенциальное поле является безвихревым).
