Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpora_OMM.doc
Скачиваний:
8
Добавлен:
20.04.2019
Размер:
1.16 Mб
Скачать

17.Квадратична функція та її властивості.

Квадратична функція n змінних називається квадратичною формою і може бути подана у вигляді:

,

де , , ,

причому матриця С завжди симетрична, тобто для всіх .

Квадратична форма Z(X) називається від’ємно означеною, якщо для всіх Х, крім Х = 0, значення Z(X) < 0 (якщо Z(X) ≤ 0, то маємо від’ємно напівозначену квадратичну форму), у протилежному разі Z(X) є додатно означеною (якщо Z(X) ≥ 0, то маємо додатно напівозначену квадратичну форму).

Квадратична форма Z(X) називається неозначеною, якщо вона додатна для одних значень Х і від’ємна для інших.

Для того, щоб довільна квадратична форма була додатно (від’ємно) означеною, необхідно і достатньо, щоб усі компоненти вектора характеристичних коренів були додатними (від’ємними) значеннями.

Якщо хоча б один із характеристичних коренів дорівнює нулю, то квадратична форма є напівдодатною (напіввід’ємною). Якщо корені мають різні знаки, то квадратична форма є неозначеною.

18.Математична постановка задачі динамічного програмування, її економічний зміст. Принцип оптимальності Беллмана.

Динамічне програмування являє собою математичний апарат, що дає змогу здійснювати планування багатокрокових керованих процесів, а також процесів, які розвиваються у часі.

Принципу оптимальності Р. Белмана, який формулюється так:

Оптимальний розв’язок багатокрокової задачі має ту властивість, що яким би не був стан системи в результаті деякої кількості кроків, необхідно вибирати управління на найближчому кроці так, щоб воно разом з оптимальним управлінням на всіх наступних кроках приводило до максимального виграшу на всіх останніх кроках, включаючи даний.

19.Метод Гоморі.

Для розв’язування цілочислових задач лінійного програмування методом Гоморі застосовують такий алгоритм:

1. Симплексним методом розв’язується задача без вимог цілочисловості змінних

Якщо серед елементів умовно-оптимального плану немає дробових чисел, то цей план є розв’язком задачі цілочислового програмування (6.1)—(6.4).

Якщо задача (6.1)—(6.3) не має розв’язку (цільова функція необмежена, або система обмежень несумісна), то задача (6.1) — (6.4) також не має розв’язку.

2. Коли в умовно-оптимальному плані є дробові значення, то вибирається змінна, яка має найбільшу дробову частину. На базі цієї змінної (елементів відповідного рядка останньої симплексної таблиці, в якому вона міститься) будується додаткове обмеження Гоморі:

.

3. Додаткове обмеження після зведення його до канонічного вигляду і введення базисного елемента приєднується до останньої симплексної таблиці, яка містить умовно-оптимальний план. Отриману розширену задачу розв’язують і перевіряють її розв’язок на цілочисловість. Якщо він не цілочисловий, то процедуру повторюють, повертаючись до п. 2. Так діють доти, доки не буде знайдено цілочислового розв’язку або доведено, що задача не має допустимих розв’язків на множині цілих чисел.

20. Метод множників Лагранжа. Теорема Лагранжа. Алгоритм розв’язування задачі на безумовний екстремум.

Ідея методу множників Лагранжа полягає в заміні початкової задачі простішою. Для цього цільову функцію замінюють іншою, з більшою кількістю змінних, тобто такою, яка включає в себе умови, що подані як обмеження. Після такого перетворення дальше розв’язування задачі полягає в знаходженні екстремуму нової функції, на змінні якої не накладено ніяких обмежень. Тобто від початкової задачі пошуку умовного екстремуму переходимо до задачі відшукання безумовного екстремального значення іншої функції. Отже, завдяки такому перетворенню можливе застосування методів класичного знаходження екстремуму функції кількох змінних.

Отже, для розв’язування задачі необхідно знайти вирази частинних похідних нової цільової функції за кожною змінною і прирівняти їх до нуля. В результаті отримаємо систему рівнянь. Її розв’язок визначає так звані стаціонарні точки, серед яких є і шукані екстремальні значення функції.

Розглянемо метод множників Лагранжа для розв’язування задачі нелінійного програмування, що має вигляд:

за умов:

,

де функції і мають бути диференційовними.

Задача полягає в знаходженні екстремуму функції за умов виконання обмежень .

Замінюємо цільову функцію (8.6) на складнішу. Ця функція називається функцією Лагранжа і має такий вигляд:

де — деякі невідомі величини, що називаються множниками Лагранжа.

Знайдемо частинні похідні і прирівняємо їх до нуля:

(8.9)

У теорії дослідження функцій задача на відшукання екстремальних значень не містить ніяких додаткових умов щодо змінних і такі задачі належать до задач відшукання безумовного екстремуму функції. Локальний та глобальний екстремуми тоді визначаються з необхідних та достатніх умов існування екстремуму функції.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]