
- •1. Наука как феномен познания
- •2. Наука и религия
- •3. Естественные и гуманитарные науки
- •4. Технический характер западной культуры
- •5. Значение научно-технической революции
- •6. Логика как процесс мышления
- •7. Математизация науки. Теория фракталов
- •8. Фундаментальные парадигмы естествознания
- •9. Научная теория
- •10. Гносеологические предпосылки науки
- •11. Классификация научных теорий
- •12. Методология и методы научного исследования
- •13. Глобальные проблемы современности
- •14. Возникновение науки в античной культуре
- •15. Наука, вера, знание в условиях средневековья
- •16. Становление и основные характеристики классической науки и научной картины мира в новое время
- •17. Революция в естествознании конца хiх-начала хх вв. Становление идей и методов неклассической науки
- •18. Концептуально-методологические сдвиги в естествознании конца хх в
- •19. Проблема учения о взаимодействии
- •20. Взаимодействие и связь в природе
- •21. Общая характеристика физического взаимодействия
- •22. Фундаментальные физические взаимодействия: гравитационное, электромагнитное, слабое и сильное
- •23. Создание теории великого объединения
- •24. Структурные уровни организации материи
- •25. Структурность и системность материи
- •26. Поле и вещество
- •27. Классификация элементарных частиц
- •28. Проблема взаимодействия мега– и микромира. Будстрап-подход
- •29. Проблема пространства и времени
- •30. Проблема построения единой теории поля
- •31. Универсальные характеристики модели корпускулы
- •32. Масса как мера инертности и гравитации
- •33. Принцип эквивалентности
- •34. Принципы относительности
- •35. Инвариантность и сохранение массы
- •36. Скорость, импульс и кинетическа энергия для медленных движений
- •37. Понятие энтропии
- •38. Релятивистский импульс и полная релятивистская энергия. Энергия покоя
- •39. Классическая механика
- •40. Проблема реальности в квантовой физике
- •41. Детерминизм и причинность в современной физике, динамические и статистические законы
- •42. Современные науки о космосе
- •43. Проблема возникновения вселенной
- •44. Структура вселенной
- •45. Эволюция и строение галактик
- •46. Эволюция звезд
- •47. Солнечная система
- •48. Антропный принцип в современной космологии
- •49. Принцип самоорганизации
- •50. Модель несвободной частицы и законы динамики
- •51. Сохранение механической энерги
- •52. Химические элементы
- •53. Периодическая система элементов д. И. Менделеева
- •54. Химические процессы
- •55. Атом и молекула как целостные объекты химии
- •56. Единство реагентов и продуктов
- •57. Сущность жизни, уровни организации живого
- •58. Представления о целостности объектов в биологии
- •59. Общая характеристика систематики моделей в биологии
- •60. Клетка как фундаментальная модель живой материи на микроуровне
- •61. Прокариоты и эукариоты
- •62. Науки о земле
- •63. Внутреннее строение и история геологического развития земли
- •64. Литосфера как абиотическая основа жизни
- •65. Экологические функции литосферы: ресурсная, геодинамическая, геофизико-геохимическая
- •66. Географическая оболочка земли
- •67. Современные концепции развития геосферных оболочек
- •68. Синергетика
- •69. Кибернетика
- •70. Основные понятия (система, обратная связь, информация). Связь информации и знания
- •71. Проблема создания искусственного интеллекта. Нейронные сети
- •72. Проблема виртуальной реальности
- •73. Современная биология
- •74. История становления и развития биологии
- •75. Проблема целостности в биологии
- •76. Сущность жизни, происхождение жизни, уровни организации живого
- •77. Эволюция форм жизни
- •78. Понятие биосферы, концепции биосферы
- •79. Структура эволюции биосферы
- •80. Экология знания, или глубинная экология
- •81. Экологические проблемы современности
- •82. Генетика
- •83. Евгеника
- •84. Современная антропология
- •85. Взаимосвязь космоса и человека
- •86. Принципы универсального эволюционизма
- •87. Физиология человека
- •88. Путь к единой культуре
- •89. Биоэтика
- •90. Здоровье, здоровый образ жизни, работоспособность, творчество
30. Проблема построения единой теории поля
Единая теория поля – это единая теория материи, призванная свести все многообразие свойств элементарных частиц и их взаимодействий к небольшому числу уникальных принципов. Такая теория еще не построена и рассматривается скорее как стратегия развития физики микромира.
Первым примером объединения различных физических явлений (электромагнитных, световых) принято считать уравнения Максвелла.
В специальной теории относительности свойства пространства и времени рассматриваются без учета гравитационных полей, которые не являются инер-циальными. Общая теория относительности распространяет выводы специальной теории относительности на все, в том числе на неинерциальные системы. Общая теория относительности связала тяготение с электромагнетизмом и механикой. Она заменила ньютонов механистический закон всемирного тяготения на полевой закон тяготения. И здесь физика перешла от вещественной к полевой теории.
Три века физика была механистической и имела дело только с веществом. Но «уравнения Максвелла описывают структуру электромагнитного поля. Ареной этих законов является все пространство, а не одни только точки, в которых находится вещество или заряды, как это имеет место для механических законов». Представление о поле победило механицизм. Уравнения Максвелла «не связывают, как это имеет место в законах Ньютона, два широко разделенных события, они не связывают события здесь с условиями там. Поле здесь и теперь зависит от поля в непосредственном соседстве в момент, только что протекший» (А. Эйнштейн, Л. Инфельд). Это существенно новый момент полевой картины мира.
Электромагнитные волны распространяются со скоростью света в пространстве, и аналогичным образом действует гравитационное поле.
Массы, создающие поле тяготения, по общей теории относительности искривляют пространство и меняют течение времени. Чем сильнее поле, тем медленнее течет время по сравнению с течением времени вне поля. Тяготение зависит не только от распределения масс в пространстве, но и от их движения, от давления и натяжений, имеющихся в телах, от электромагнитного и других физических полей. Изменения гравитационного поля распределяются в вакууме со скоростью света. В теории Эйнштейна материя влияет на свойства пространства и времени.
Таким образом, А. Эйнштейн пытался объединить электромагнитные и гравитационные явления на основе общей теории относительности, связывающей гравитационные взаимодействия материи с геометрическими свойствами пространства-времени.
В начале 1970-х гг. была построена объединенная теория слабого и электромагнитного взаимодействий. После этого выдвинули ряд предположений, что при относительно больших энергиях взаимодействующих частиц или при чрезвычайно высокой температуре материи все четыре фундаментальных взаимодействия (гравитационное, электромагнитное, сильное и слабое) характеризуются одинаковой силой (Великое объединение).
Таким образом, единая теория поля остается пока мечтой. Однако неразрывная связь между всеми частицами и их взаимопревращаемость заставляют с неослабевающей настойчивостью искать пути подхода к единой теории электромагнитного поля, призванной объяснить все многообразие форм материи.