
- •1. Наука как феномен познания
- •2. Наука и религия
- •3. Естественные и гуманитарные науки
- •4. Технический характер западной культуры
- •5. Значение научно-технической революции
- •6. Логика как процесс мышления
- •7. Математизация науки. Теория фракталов
- •8. Фундаментальные парадигмы естествознания
- •9. Научная теория
- •10. Гносеологические предпосылки науки
- •11. Классификация научных теорий
- •12. Методология и методы научного исследования
- •13. Глобальные проблемы современности
- •14. Возникновение науки в античной культуре
- •15. Наука, вера, знание в условиях средневековья
- •16. Становление и основные характеристики классической науки и научной картины мира в новое время
- •17. Революция в естествознании конца хiх-начала хх вв. Становление идей и методов неклассической науки
- •18. Концептуально-методологические сдвиги в естествознании конца хх в
- •19. Проблема учения о взаимодействии
- •20. Взаимодействие и связь в природе
- •21. Общая характеристика физического взаимодействия
- •22. Фундаментальные физические взаимодействия: гравитационное, электромагнитное, слабое и сильное
- •23. Создание теории великого объединения
- •24. Структурные уровни организации материи
- •25. Структурность и системность материи
- •26. Поле и вещество
- •27. Классификация элементарных частиц
- •28. Проблема взаимодействия мега– и микромира. Будстрап-подход
- •29. Проблема пространства и времени
- •30. Проблема построения единой теории поля
- •31. Универсальные характеристики модели корпускулы
- •32. Масса как мера инертности и гравитации
- •33. Принцип эквивалентности
- •34. Принципы относительности
- •35. Инвариантность и сохранение массы
- •36. Скорость, импульс и кинетическа энергия для медленных движений
- •37. Понятие энтропии
- •38. Релятивистский импульс и полная релятивистская энергия. Энергия покоя
- •39. Классическая механика
- •40. Проблема реальности в квантовой физике
- •41. Детерминизм и причинность в современной физике, динамические и статистические законы
- •42. Современные науки о космосе
- •43. Проблема возникновения вселенной
- •44. Структура вселенной
- •45. Эволюция и строение галактик
- •46. Эволюция звезд
- •47. Солнечная система
- •48. Антропный принцип в современной космологии
- •49. Принцип самоорганизации
- •50. Модель несвободной частицы и законы динамики
- •51. Сохранение механической энерги
- •52. Химические элементы
- •53. Периодическая система элементов д. И. Менделеева
- •54. Химические процессы
- •55. Атом и молекула как целостные объекты химии
- •56. Единство реагентов и продуктов
- •57. Сущность жизни, уровни организации живого
- •58. Представления о целостности объектов в биологии
- •59. Общая характеристика систематики моделей в биологии
- •60. Клетка как фундаментальная модель живой материи на микроуровне
- •61. Прокариоты и эукариоты
- •62. Науки о земле
- •63. Внутреннее строение и история геологического развития земли
- •64. Литосфера как абиотическая основа жизни
- •65. Экологические функции литосферы: ресурсная, геодинамическая, геофизико-геохимическая
- •66. Географическая оболочка земли
- •67. Современные концепции развития геосферных оболочек
- •68. Синергетика
- •69. Кибернетика
- •70. Основные понятия (система, обратная связь, информация). Связь информации и знания
- •71. Проблема создания искусственного интеллекта. Нейронные сети
- •72. Проблема виртуальной реальности
- •73. Современная биология
- •74. История становления и развития биологии
- •75. Проблема целостности в биологии
- •76. Сущность жизни, происхождение жизни, уровни организации живого
- •77. Эволюция форм жизни
- •78. Понятие биосферы, концепции биосферы
- •79. Структура эволюции биосферы
- •80. Экология знания, или глубинная экология
- •81. Экологические проблемы современности
- •82. Генетика
- •83. Евгеника
- •84. Современная антропология
- •85. Взаимосвязь космоса и человека
- •86. Принципы универсального эволюционизма
- •87. Физиология человека
- •88. Путь к единой культуре
- •89. Биоэтика
- •90. Здоровье, здоровый образ жизни, работоспособность, творчество
20. Взаимодействие и связь в природе
Под энергией связи понимают энергию связанной системы каких-либо частиц, равную работе, которую необходимо затратить, чтобы разделить эту систему на составляющие ее частицы и удалить их друг от друга на такое расстояние, на котором их взаимодействием можно пренебречь. Энергия связи определяется взаимодействием частиц и является отрицательной величиной, так как при образовании связанной системы энергия выделяется. Абсолютная величина энергии связи характеризует прочность связи и устойчивость системы. Например, для атомного ядра энергия связи определяется сильным взаимодействием нуклонов в ядре. Для наиболее устойчивых ядер она составляет 8 × 106 эВ/нуклон (удельная энергия связи – энергия связи, приходящаяся на один нуклон). Эта энергия может выделиться при слиянии легких ядер в более тяжелое ядро (термоядерная реакция), а также при спонтанном делении тяжелых ядер. Термоядерные реакции происходят при очень высоких температурах. Такие температуры необходимы для преодоления электростатического барьера, обусловленного взаимным отталкиванием ядер (как одноименно заряженных частиц). Без этого невозможно сближение ядер на расстояние порядка радиуса действия ядерных сил. Поэтому термоядерные реакции в природных условиях протекают лишь в недрах звезд. Так как термоядерные реакции представляют собой процессы образования сильно связанных ядер из более рыхлых, то они сопровождаются выделением в продуктах реакции избыточной кинетической энергии, равной увеличению суммарной энергии связи. На использовании этой выделившейся энергии основана ядерная энергетика.
Энергия связи, электронов в атоме или молекуле определяется электромагнитным взаимодействием. Для атома водорода в основном состоянии она равна 13,6 эВ. Этим же взаимодействием обусловлена энергия связи атомов в молекуле и кристалле. Например, ковалентное межатомное взаимодействие возникает в результате обобществления валентных электронов парой соседних атомов, при этом происходит понижение энергии.
Энергия связи, обусловленная гравитационным взаимодействием, обычно мала и имеет значение лишь для некоторых космических объектов, например для черных дыр. Они возникают в результате сжатия тела гравитационными силами до размеров, меньших его гравитационного радиуса: rg = 2GM /c2 где М– масса тела, G-гравитационная постоянная, с – численное значение скорости света).
Черной дырой может стать звезда. У вращающейся черной дыры вне горизонта (области, за которую не выходит свет) существует особая область – эргосфера. Вещество, попавшее в эргосферу, неизбежно начинает вращаться вокруг черной дыры. Наличие эргосферы может привести к потере черной дырой энергии вращения. Это возможно в случае, когда некоторое тело, влетев в эргосферу, распадается на две части, причем одна из них продолжает падение на черную дыру, а другая вылетает из эргосферы по направлению вращения. Энергия вылетающей части может при определенных условиях превышать первоначальную энергию всего тела.
Таким образом, понятие энергии связи ядра играет особо важную роль в ядерной физике. Энергия связи позволяет объяснить устойчивость ядер, а также выяснить, какие процессы ведут к выделению ядерной энергии.