Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Некоторых нет.docx
Скачиваний:
40
Добавлен:
19.04.2019
Размер:
290.6 Кб
Скачать

35 Самоорганизация систем как основа их развития.

По отношению ко всем самоорганизующимся системам аналогичное определение дал немецкий кибернетик Г. Фёрстер: "Термин "самоорганизующаяся система", - писал он, - становится бессмысленным, если система не находится в контакте с окружением, которое обладает доступными для нее энергией и порядком и с которым наша система находится в состоянии постоянного взаимодействия, так что она умудряется как-то "жить" за счет этого окружения"

Другие исследования были направлены на изучение самоорганизующихся химических реакций, которые впервые экспериментально открыли наши отечественные ученые - сначала Б. Белоусов, затем группа исследователей во главе с А. Жаботинским [1]. Их опыты послужили основой для построения соответствующей теоретической модели ("брюсселятора [2]") бельгийскими учеными под руководством И. Пригожина (русского по происхождению). Было установлено, что в ходе специфических химических реакций возникают определенные пространственные структуры. В других реакциях периодически меняется во времени цвет раствора ("химические часы"). Пригожин объяснил эти реакции взаимодействием системы со средой, из которой в нее поступают свежие реагенты, а выводятся использованные. Поскольку все подобные процессы сопровождаются диссипацией, или рассеянием, энергии, то самоорганизующиеся структуры такого рода он назвал диссипативными.

Новая теория самоорганизации опирается на неклассическую термодинамику, оперирующую открытыми и неравновесными системами. Согласно этой теории началом процесса самоорганизации служат случайные отклонения системы от точки равновесия, которые называют флуктуациями. Они происходят постоянно, но в первое время эти флуктуации подавляются системой. Поскольку, однако, система взаимодействует с окружающей средой и является неравновесной, то постепенно такие флуктуации не только не ослабляются, но, наоборот, усиливаются. В результате их усиления прежняя динамическая структура, или режим функционирования, "расшатывается", т.е. старые взаимосвязи между элементами системы подвергаются изменениям, и как следствие такого процесса возникают новый динамический режим, структура, или спонтанный порядок.

Следует отметить, что понятие порядка раньше применялось лишь по отношению к фиксированным структурам, начиная от взаимосвязи частей в устойчивых системах и кончая расположением атомов в кристаллической решетке. Никакого представления о динамическом порядке, возникающем спонтанно, в классической науке не существовало. Между тем макроскопический динамический порядок играет важную роль не только в биологии и социальной жизни, где структура систем не остается неизменной на протяжении их существования. Даже в неорганической природе многие процессы сопровождаются возникновением динамического порядка, о чем свидетельствуют бесчисленные примеры образования разнообразных форм, начиная от появления водяных вихрей и песчаных дюн и кончая космическими процессами, примером чего могут служить образование колец вокруг Сатурна.

Хотя понятие стабильного порядка является весьма важным для технологии и практической деятельности, оно оказывается весьма ограниченным и даже неудовлетворительным, когда приходится анализировать процессы эволюции и развития систем. Поэтому синергетический подход к определению порядка является необходимым дополнением для дальнейшего исследования развития и систем.