
- •2) Геометрические векторы: основные понятия
- •3) Сложение векторов
- •Умножение на число
- •Свойства линейных операци
- •6) Линейные операции над векторами в координатной форме
- •Действия с векторами в координатной форме
- •Как найти угол между двумя векторами
- •Инструкция
- •14) Уравнение пучка прямых
- •§ 2. Канонические и параметрические уравнения прямой в пространстве
- •§3. Расстояние от точки до плоскости в пространстве
- •§4. Координаты точки, делящей отрезок в заданном соотношении
- •Свойства углов, связанных с окружностью
- •Длины и площади
- •Вписанные и описанные окружности о кружность и треугольник
- •Окружность и четырехугольники
- •23) Каноническое уравнение эллипса
- •25) Парабола
- •Виды матриц
- •Матрицы специального вида
- •2. Существует такое натуральное число r, удовлетворяющее неравенствам , что .
- •3. Если какой-либо диагональный элемент , то все элементы I-й строки и всех последующих строк равны нулю.
- •30) Обратная матрица
- •32) Система линейных уравнений, ее решение, различные формы записи системы линейных уравнений, определение однородной,неоднородной,совместной,несовместной,определенной и неопределенной систем.
- •Векторная форма записи
- •Матричная форма записи
- •33) Решение систем линейных уравнений
- •34) Описание метода
- •3 7)Решение систем линейных уравнений методом Гаусса
- •[Править]Условие совместности
- •Алгоритм Описание
- •39) Однородные системы линейных уравнений.
- •42) Линейно зависимые и линейно независимые системы векторов векторного пространства
- •43) Размерность и базис линейного пространства, координаты вектора
- •Линейная оболочка системы векторов. Подпространство. Базис подпространства
- •Определения
- •Изоморфизм
- •46) Собственные числа и собственные векторы
- •Основная терминология
- •Геометрическая модель
- •Действия над комплексными числами
- •50) Тригонометрическая и показательная формы
- •Определение
- •Связанные определения
- •Свойства
14) Уравнение пучка прямых
Совокупность прямых, проходящих через некоторую точку S, называется пучком прямых с центром в S.
Если
и
-
уравнения двух прямых, пересекающихся
в точке S,
то уравнение
,
(1)
где
,
-
какие угодно числа, не равные одновременно
нулю, определяет прямую, также проходящую
через точку S.
Более того, в уравнении (1) числа , всегда возможно подобрать так, чтобы оно определило любую (заранее назначенную) прямую, проходящую через точку S, иначе говоря, любую прямую пучка с центром S. Поэтому уравнение вида (1) называется уравнением пучка (с центром в S).
Если
,
то, деля обе части уравнения (1) на
и
полагая
,
получим
.
(2)
Этим
уравнением можно определить любую
прямую пучка с центром S,
кроме той, которая соответствует
,
то есть кроме прямой
15)Угол между прямыми |
||
Пусть
прямые
Если
Если |
Условия параллельности и перпендикулярности двух прямых:
Если
прямые
и
параллельны,
то угол
и
,
откуда из формулы угла между двумя
прямыми
.
И наоборот, если
,
то по этой же формуле
и
.
Т.о., равенство угловых коэффициентов является необходимым и достаточным условием параллельности 2х прямых.
- условие
параллельности двух прямых.
Если
прямые перпендикулярны,
то
,
при этом
или
,
откуда
или
.
Справедливо так же и обратное утверждение.
Т.о., для перпендикулярности прямых необходимо и достаточно, чтобы их угловые коэффициенты были обратны по величине и противоположны по знаку.
- условие
перпендикулярности двух прямых.
Если
две прямые заданы уравнениями в общем
виде:
и
, то
учитывая их угловые коэффициенты
и
,
условие параллельности прямых имеет
вид:
.
Следовательно, условием параллельности прямых, заданных общими уравнениями является пропорциональность коэффициентов при переменных.
Условие
перпендикулярности прямых
в
этом случае примет вид
или
,
Т.е. условием перпендикулярности двух прямых, заданных общими уравнениями, является равенство нулю суммы произведений коэффициентов при переменных х и у.
16) Общее уравнение плоскости
Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению:
Ax + By + Cz + D = 0
где А, В, С – координаты вектора -вектор нормали к плоскости.
Возможны следующие частные случаи:
А = 0 – плоскость параллельна оси Ох
В = 0 – плоскость параллельна оси Оу
С = 0 – плоскость параллельна оси Оz
D = 0 – плоскость проходит через начало координат
А = В = 0 – плоскость параллельна плоскости хОу
А = С = 0 – плоскость параллельна плоскости хОz
В = С = 0 – плоскость параллельна плоскости yOz
А = D = 0 – плоскость проходит через ось Ох
В = D = 0 – плоскость проходит через ось Оу
С = D = 0 – плоскость проходит через ось Oz
А = В = D = 0 – плоскость совпадает с плоскостью хОу
А = С = D = 0 – плоскость совпадает с плоскостью xOz
В = С = D = 0 – плоскость совпадает с плоскостью yOz.
17) Угол между плоскостями
Пусть
плоскости
и
заданы
соответственно уравнениями
и
.
Требуется найти угол
между
этими плоскостями.
Плоскости,
пересекаясь, образуют четыре двугранных
угла (рис. 11.6): два тупых и два острых
или четыре прямых, причем оба тупых
угла равны между собой, и оба острых
тоже равны между собой. Мы всегда будем
искать острый угол. Для определения
его величины возьмем точку
на
линии пересечения плоскостей и в этой
точке в каждой из плоскостей проведем
перпендикуляры
и
к
линии пересечения. Нарисуем также
нормальные векторы
и
плоскостей
и
с
началами в точке
(рис.
11.6).
Рис.11.6.Угол между плоскостями
Если
через точку
провести
плоскость
,
перпендикулярную линии пересечения
плоскостей
и
,
то прямые
и
и
изображения векторов
и
будут
лежать в этой плоскости. Сделаем чертеж
в плоскости
(возможны
два варианта: рис. 11.7 и 11.8).
Рис.11.7.Угол между нормальными векторами острый
Рис.11.8.Угол между нормальными векторами тупой
В
одном варианте (рис. 11.7)
и
,
следовательно, угол
между
нормальными векторами равен углу
,
являющемуся линейным углом острого
двугранного угла между плоскостями
и
.
Во
втором варианте (рис. 11.8)
,
а угол
между
нормальными векторами равен
.
Так как
то
в обоих случаях
.
По
определению скалярного произведения
.
Откуда
и соответственно
|
(11.4) |
Так как координаты нормальных векторов известны, если заданы уравнения плоскостей, то полученная формула (11.4) позволяет найти косинус острого угла между плоскостями.
Если плоскости перпендикулярны, то перпендикулярны и их нормальные векторы. Получаем условие перпендикулярности плоскостей:
|
(11.5) |
Если плоскости параллельны, то коллинеарны их нормальные векторы. Получаем условие параллельности плоскостей
|
(11.6) |
где
--
любое число.
Условия параллельности и перпендикулярности плоскостей
|
|
|
|
Угол между двумя плоскостями в пространстве связан с углом между нормалями к этим плоскостям 1 соотношением: = 1 или = 1800 - 1, т.е.
cos = cos1.
Определим угол 1. Известно, что плоскости могут быть заданы соотношениями:
,
где
(A1, B1, C1),
(A2, B2, C2).
Угол между векторами нормали найдем
из их скалярного произведения:
.
Таким образом, угол между плоскостями находится по формуле:
Выбор знака косинуса зависит от того, какой угол между плоскостями следует найти – острый, или смежный с ним тупой.
Условия параллельности и перпендикулярности плоскостей.
На основе полученной выше формулы для нахождения угла между плоскостями можно найти условия параллельности и перпендикулярности плоскостей.
Для того, чтобы плоскости были перпендикулярны необходимо и достаточно, чтобы косинус угла между плоскостями равнялся нулю. Это условие выполняется, если:
.
Плоскости
параллельны, векторы нормалей
коллинеарны:
.Это
условие выполняется, если:
.
Угол между прямыми в пространстве.
Пусть в пространстве заданы две прямые. Их параметрические уравнения:
l1:
l2:
Угол между прямыми и угол между направляющими векторами этих прямых связаны соотношением: = 1 или = 1800 - 1. Угол между направляющими векторами находится из скалярного произведения. Таким образом:
.
18) . Каноническое уравнение плоскости в пространстве
Пусть в декартовой системе координат дан вектор n={A,B,C} и точка М0=(x0,y0,z0).
Построим плоскость Π, проходящую через т. М0, перпендикулярную вектору n (этот вектор называют нормальным вектором или нормалью плоскости).
Утверждение
1: М
Π
М0М
n.
М0М={x-x0, y-y0, z-z0} n A(x-x0)+B(y-y0)+C(z-z0)=0. (*)
(См. свойства скалярного произведения)
Каноническое уравнение плоскости в пространстве:
Аx+By+Cz+D=0, где D = -Ax0-By0-Cz0.
Замечание 1: формула (*) используется при непосредственном решении задач, после упрощения получается искомое каноническое уравнение плоскости.
Пример 1. Написать каноническое уравнение плоскости, перпендикулярной вектору n={3,1,1} и проходящей через точку М(2,-1,1).
Пример 2. Написать каноническое уравнение плоскости, содержащей точки K(2,1,-2), L(0,0,-1), M(1,8,1).