Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety po matematike.docx
Скачиваний:
6
Добавлен:
17.04.2019
Размер:
702.62 Кб
Скачать

Уравнение прямой на плоскости

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно, т.е. А2 + В2  0. Это уравнение первого порядка называют общим уравнением прямой.

 

            В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

-          C = 0, А  0, В  0 – прямая проходит через начало координат

-          А = 0, В  0, С  0 { By + C = 0}- прямая параллельна оси Ох

-          В = 0, А  0, С  0 { Ax + C = 0} – прямая параллельна оси Оу

-          В = С = 0, А  0 – прямая совпадает с осью Оу

-          А = С = 0, В  0 – прямая совпадает с осью Ох

 

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

12)Линии второго порядка

Линии второго порядка

Линии второго порядка, плоские линии, декартовы прямоугольные координаты которых удовлетворяют алгебраическому уравнению 2-й степени

a11x2 + a12xy + a22y2 + 2a13x + 2a23y + a11 = 0. (*)

Уравнение (*) может и не определять действительного геометрического образа, но для сохранения общности в таких случаях говорят, что оно определяет мнимую Л. в. п. В зависимости от значений коэффициентов общего уравнения (*) оно может быть преобразовано с помощью параллельного переноса начала и поворота системы координат на некоторый угол к одному из 9 приведённых ниже канонических видов, каждому из которых соответствует определённый класс линий. Именно,

нераспадающиеся линии:

 — эллипсы,

 — гиперболы,

y2 = 2px — параболы,

 — мнимые эллипсы;

распадающиеся линии:

 — пары пересекающихся прямых,

 — пары мнимых пересекающихся прямых,

x2 - а2 = 0 — пары параллельных прямых,

x2 + а2 = 0 — пары мнимых параллельных прямых,

x2 = 0 — пары совпадающих параллельных прямых.

Исследование вида Л. в. п. может быть проведено без приведения общего уравнения к каноническому виду. Это достигается совместным рассмотрением значений т. н. основных инвариантов Л. в. п. — выражений, составленных из коэффициентов уравнения (*), значения которых не меняются при параллельном переносе и повороте системы координат:

, ,

S = a11 + a22, (aij = aji).

Так, например, эллипсы, как нераспадающиеся линии, характеризуются тем, что для них D ¹ 0; положительное значение инварианта d выделяет эллипсы среди других типов нераспадающихся линий (для гипербол d < 0, для парабол d = 0). Различить случаи действительного или мнимого эллипсов позволяет сопоставление знаков инвариантов D и S: если D и S разных знаков, эллипс действительный; эллипс мнимый, если D и S одного знака.

Три основные инварианта D, d и S определяют Л. в. п. (кроме случая параллельных прямых) с точностью до движения евклидовой плоскости: если соответствующие инварианты D, d и S двух линий равны, то такие линии могут быть совмещены движением. Иными словами, эти линии эквивалентны по отношению к группе движений плоскости (метрически эквивалентны).

Существуют классификации Л. в. п. с точки зрения др. групп преобразований. Так, относительно более общей, чем группа движений, — группы аффинных преобразований — эквивалентными являются любые две линии, определяемые уравнениями одного канонического вида. Например, две подобные Л. в. п. (см. Подобие)считаются эквивалентными. Связи между различными аффинными классами Л. в. п. позволяет установить классификация с точки зрения проективной геометрии, в которой бесконечно удалённые элементы не играют особой роли. Действительные нераспадающиеся Л. в. п.: эллипсы, гиперболы и параболы образуют один проективный класс — класс действительных овальных линий (овалов). Действительная овальная линия является эллипсом, гиперболой или параболой в зависимости от того, как она расположена относительно бесконечно удалённой прямой: эллипс пересекает несобственную прямую в двух мнимых точках, гипербола — в двух различных действительных точках, парабола касается несобственной прямой; существуют проективные преобразования, переводящие эти линии одна в другую. Имеется всего 5 проективных классов эквивалентности Л. в. п. Именно,

невырождающиеся линии

(x1, x2, x3 — однородные координаты):

x12 + x22 — x32 = 0 — действительный овал,

x12 + x22 + x32 = 0 — мнимый овал,

вырождающиеся линии:

x12 — x22 = 0 — пара действительных прямых,

x12 + x22 = 0 — пара мнимых прямых,

x12 = 0 — пара совпадающих действительных прямых.

13)Ф-ия. Способы задание ф-ии. Область определения и

область значения

Определение:

Николай Лобачевский 1834

 

Общее понятие требует, чтобы функцией от х называть число, которое дается для каждого х и вместе с каждым х постепенно изменяется

П.Лжен-Дирихле 1837

 

У есть функция переменной х (на отрезке а<=x<=b) , если каждому значению х (на этом отрезке) соответствует совершенно определенное значение у, причем безразлично, каким образом установлено это соответствие – аналитической формулой, графиком, таблицей либо даже просто словами

Область определения функции  — множество, на котором задаётся функция. Область значений функции  — множество, которое получается в результате применения функции. Способы задания функции:

  • Табличный способ. Довольно распространенный, заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

  • Графический способ. Графиком функции y = f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению.

  • Аналитический способ. Чаще всего закон, устанавливающий связь между аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим.

  • Словесный способ. Этот способ состоит в том, что функциональная зависимость выражается словами.

Монотонная функция — это функция, приращение которой не меняет знака, то есть либо всегда неотрицательно, либо всегда неположительно. Если в дополнение приращение не равно нулю, то функция называется строго монотонной. Монотонная функция — это функция, меняющаяся в одном и том же направлении.(Пример: y=kx+b)

Нечётные и чётные функции — функции, графики которых обладают симметрией относительно изменения знака аргумента.

  • Нечётная функция — функция, меняющая знак при изменении знака независимого переменного (симметричная относительно центра координат).(Пример: y=1/x, y=x^3, y=sin x, y=tg x, y=ctg x, y=arcsin x, y=arctg x)

  • Чётная функция — функция, не изменяющая своего значения при изменении знака независимого переменного (симметричная относительно оси ординат).(Пример: y=|x|, y=x^2, y=cos x)

Периодическая функция ― функция, повторяющая свои значения через какой-то ненулевой период, то есть не меняющая своего значения при добавлении к аргументу фиксированного ненулевого числа (периода).(Пример: Все тригонометрические функции)

Наименьшим положительным периодом функции  называется такое число T, что T - период f, и ни одно положительное число, меньшее T, периодом f уже не является.

14)Основные характеристики ф-ий

Основные свойства функции.

1. Четность и нечетность

Функция называется четной, если       – область определения функции симметрична относительно нуля       – для любого х из области определения f(-x) = f(x)

График четной функции симметричен относительно оси 0y

Функция называется нечетной, если       – область определения функции симметрична относительно нуля       – для любого х из области определения f(-x) = –f(x)

График нечетной функции симметричен относительно начала координат.

2.Периодичность

Функция f(x) называется периодической с периодом , если для любого х из области определения f(x) = f(x+Т) = f(x-Т).

График периодической функции состоит из неограниченно повторяющихся одинаковых фрагментов.

3. Монотонность (возрастание, убывание)

Функция f(x) возрастает на множестве Р , если для любых x1 и x2 из этого множества, таких, что x1 < x2 выполнено неравенство f(x1)< f(x2).

Функция f(x) убывает на множестве Р , если для любых x1 и x2 из этого множества, таких, что x1 < x2 выполнено неравенство f(x1) > f(x2).

4. Экстремумы

Точка Хmax называется точкой максимума функции f(x) , если для всех х из некоторой окрестности Хmax , выполнено неравенство f(х) f(Xmax).

Значение Ymax=f(Xmax) называется максимумом этой функции.

Хmax – точка максимума Уmax – максимум

Точка Хmin называется точкой минимума функции f(x) , если для всех х из некоторой окрестности Хmin , выполнено неравенство f(х) f(Xmin).

Значение Ymin=f(Xmin) называется минимумом этой функции.

Xmin – точка минимума Ymin – минимум

Xmin, Хmax – точки экстремума Ymin, Уmax – экстремумы.

5. Нули функции

Нулем функции y = f(x) называется такое значение аргумента х , при котором функция обращается в нуль: f(x) = 0.

Х123 – нули функции y = f(x).

15)Последовательность и ее св-ва

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]