Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электрические машины (лекции).doc
Скачиваний:
38
Добавлен:
17.04.2019
Размер:
4.88 Mб
Скачать

2 .6.3. Пуск двигателя с фазным ротором

Пуск этого двигателя происходит при полном напряжении. Но за счёт введения активного сопротивления в роторную цепь увеличиваем пусковой момент и уменьшаем пусковой ток.

Пуск производится в несколько ступеней. Это делается для того, чтобы уменьшить время пуска.

2.7. Асинхронные двигатели с обмоткой ротора специального исполнения

Как было установлено, что одним из способов улучшения пусковых характеристик асинхронного двигателя является повышение активного сопротивления в цепи ротора.

Однако наличие пусковых сопротивлений, переключающих устройств, контактных колен, повышает стоимость, снижает надёжность и усложняет эксплуатацию. Эти недостатки можно избежать, применяя роторы специального исполнения, имеющие К.З. обмотки в виде беличьей клетки, активные и индуктивные сопротивления которых меняются в процессе пуска в ход. по мере разбега с изменением частоты. В роторах подобных конструкций используется эффект вытеснения тока.

Вообще для асинхронных двигателей необходимо отметить такое противоречие:

Е сли активное сопротивление в роторе большое, то пусковой момент большой, а ток пусковой ограничен, т.е. получаются хорошие пусковые характеристики, а рабочие характеристики получаются плохими, т.к. при том же моменте сопротивления на валу, скольжение возрастёт, а это приведёт к ухудшению рабочих характеристик. И наоборот, если активное сопротивление ротора будет малым, то рабочие характеристики будут хорошими (скольжение мало), пусковые характеристики плохими (см. рис.1).

Асинхронные двигатели с обмоткой ротора специального исполнения решают эти противоречия компромиссно.

2.7.1. Короткозамкнутый асинхронный двигатель с глубоким пазом на роторе

В этой конструкции стержни заложены в пазы ротора, имеют большие радиальные размеры по сравнению с шириной. Конструкции стержней имеют следующий вид:

Идея эффекта вытеснения тока в стержне следующая:

При пуске n = 0, скольжение = 1, а частота в роторе f2 = f1.

Ток в стержне созданный основной ЭДС будет иметь поля рассеяния, которые будут изменяться с частотой = 50 Гц и наводить в нижней части стержня (проводник находиться в железе) ЭДС, которая создает вихревые токи направленные встречно основному току и будут вытеснять его на периферию (к зазору), (рис.3). Площадь прохождения уменьшается, а это приведет к увеличению активного сопротивления, а индуктивное сопротивление стержня уменьшится, т.к. магнитная проводимость полем рассеяния уменьшается, это приводит к улучшению пусковых характеристик.

При S = Sн плотность тока в стержне распределится равномерно.

По мере разгона ротора частота f2 уменьшается, а следовательно и частота пересечения стержня полями рассеяния уменьшится. Уменьшатся вихревые токи и основной ток будет глубже проникать в стержень.

При скольжении S = Sн частота f2 = 2-3 Гц и влиянием потоков рассеяния можно пренебречь и ток в стержне ротора будет проходить по всей площади стержня, что приведет к тому, что активное сопротивление ротора будет малым, а это приведет к тому, что рабочие характеристики будут благоприятными.

Обычно сопротивление r2 возрастает в 3-4 раза, а индуктивное сопротивление снижается на 30-40% при S = 1.

При клинообразной форме стержня эффект вытеснения проявляется в большей степени, т.е. r2 возрастает сильнее, вытеснение тока проявляется только в стержне пазовой части. Активные и индуктивные сопротивления роторной цепи запишутся:

где , - сопротивления при S = Sн; Kr - коэффициент увеличения активного сопротивления при S = 1; Kx - коэффициент снижения индуктивного сопротивления при S = 1.

где

 - приведенная высота стержня

h - высота стержня

вст - ширина стержня

вп - ширина паза

f2 - частота ЭДС ротора

 - удельное сопротивление материала ротора.

На рис.5 представлено изменение активного и индуктивного сопротивления обмотки ротора при изменении S = 1  0.

Так как параметры , переменны для различных скольжений, то геометрическим методом тока I, не будет окружность, а будет сплошной кривой представленной на рис.6.

Следует отметить, что за счет большего рассеяния роторной обмотки Cos и перегрузочная способность меньше, чем у двигателей с круглым стержнем на роторе.