- •Понятие и задачи эконометрики, как науки. Эконометрическая модель и ее составляющие.
- •Характеристики случайных величин: поле корреляции, математическое ожидание, среднее значение, выборочная дисперсия, стандартное отклонение.
- •Выборочный корреляционный момент (выборочная ковариация), коэффициент корреляции (r) и его свойства при большом объеме выборки.
- •Виды эконометрических моделей.
- •Понятие регрессионной модели.
- •Системы одновременных уравнений
- •Типы данных при эконометрическом моделировании Пространственные данные
- •Временные ряды
- •Стандартные предположения регрессионного анализа. Понятия гомоскедастичности и гетероскедастичности дисперсии ошибок
- •Модель парной линейной регрессии
- •Метод наименьших квадратов оценки параметров парной регрессионной модели
- •Статистические свойства мнк-оценок параметров уравнения регрессии
- •Использование модели парной линейной регрессии для прогноза
- •Геометрический смысл регрессионной модели, составляющие дисперсии.
- •Доверительный интервал для функции регрессии (для Мx (y)).
- •Доверительный интервал для индивидуальных значений зависимой переменной
- •Доверительный интервал для параметра β регрессионной модели.
- •Доверительный интервал для параметра σ2 регрессионной модели.
- •Основная идея дисперсионного анализа
- •Процедура проверки значимости линейной связи между переменными, использование f-критерия (критерия Фишера-Снедекора)
- •Коэффициент детерминации (r2) и его свойства.
- •Оценка статистической значимости коэффициентов парной линейной регрессии и корреляции.
- •Графический метод проверки стандартных предположений регрессионного анализа.
- •Понятие предельной склонности потребления в модели доход-потребление
- •Приведение степенной модели к линейной форме модели, оценка параметров модели и ее качества
- •Понятие предельной склонности и эластичности функции. Условия постоянства предельной склонности и эластичности функции.
- •Обратно пропорциональная зависимость, Линеаризация этой модели и ее эластичность
- •Модели с убывающей эластичностью, их линеаризация
- •Итерационные методы подбора нелинейных моделей
- •Нелинейные модели множественной регрессии
- •Проверка статистических гипотез о значениях отдельных коэффициентов
- •Отбор факторов в модель линейной множественной регрессии
- •Методы построения уравнения множественной регрессии
- •Метод наименьших квадратов оценивания параметров множественной линейной регрессии
- •Уравнение множественной регрессии в стандартизированном масштабе
- •Понятие частных и средних коэффициентов эластичности
- •Коэффициенты множественной корреляции и детерминации
- •Частные и общий коэффициенты корреляции
- •Проверка значимости уравнения линейной множественной регрессии с помощью критериев Фишера и Стьюдента
- •Метод взвешенных наименьших квадратов (обобщенный мнк)
- •Понятие и примеры фиктивных переменных
- •Модели, содержащие только качественные объясняющие переменные
- •Модели, в которых объясняющие переменные носят как количественный, так и качественный характер
- •Виды моделей временных рядов, составляющие временного ряда
- •Стационарные и нестационарные временные ряды
- •Аддитивная и мультипликативная модели временных рядов
- •Коэффициент автокорреляции, его свойства. Автокорреляционная функция, коррелограмма, их анализ
- •Моделирование тенденции временного ряда
- •Моделирование сезонных колебаний
- •. Автокорреляция в остатках. Критерий Дарбина-Уотсона
- •Алгоритм выявления автокорреляции остатков на основе критерия Дарбина-Уотсона
- •Классификация систем регрессионных уравнений
- •Оценка параметров систем одновременных уравнений
- •Проблема идентификации структурных моделей. Необходимое и достаточные условия идентифицируемости.
- •Методы оценки параметров структурной модели
Проверка значимости уравнения линейной множественной регрессии с помощью критериев Фишера и Стьюдента
Значимость уравнения множественной регрессии в целом, так же как и в парной регрессии, оценивается с помощью -критерия Фишера:
(4.30)
где
– факторная сумма квадратов на одну
степень свободы;
– остаточная сумма квадратов на одну
степень свободы;
– коэффициент (индекс) множественной
детерминации; m –
число оцениваемых параметров уравнения
регрессии; n –
число наблюдений.
Оценивается значимость не только
уравнения в целом, но и фактора,
дополнительно включенного в регрессионную
модель. Необходимость такой оценки
связана с тем, что не каждый фактор,
вошедший в модель, может существенно
увеличивать долю объясненной вариации
результативного признака. Кроме того,
при наличии в модели нескольких факторов
они могут вводиться в модель в разной
последовательности. Ввиду корреляции
между факторами значимость одного и
того же фактора может быть разной в
зависимости от последовательности его
введения в модель. Мерой для оценки
включения фактора в модель служит
частный
-критерий,
т.е.
.
Частный -критерий построен на сравнении прироста факторной дисперсии, обусловленного влиянием дополнительно включенного фактора, с остаточной дисперсией на одну степень свободы по регрессионной модели в целом. В общем виде для фактора частный -критерий определится как
(4.31)
где
– коэффициент множественной детерминации
для модели с полным набором факторов,
– тот же показатель, но без включения
в модель фактора
,
n – число наблюдений,
m – число параметров
в модели.
Фактическое значение частного
-критерия сравнивается с табличным при
уровне значимости α и числе степеней
свободы: 1 и
.
Если фактическое значение
превышает
,
то дополнительное включение фактора
в модель статистически оправданно и
коэффициент чистой регрессии
при факторе
статистически значим. Если же фактическое
значение
меньше табличного, то дополнительное
включение в модель фактора
не увеличивает существенно долю
объясненной вариации признака
,
следовательно, нецелесообразно его
включение в модель; коэффициент регрессии
при данном факторе в этом случае
статистически незначим.
Для двухфакторного уравнения частные
-критерии
имеют вид:
(4.32)
С помощью частного -критерия можно проверить значимость всех коэффициентов регрессии в предположении, что каждый соответствующий фактор вводился в уравнение множественной регрессии последним.
Частный
-критерий
оценивает значимость коэффициентов
чистой регрессии. Зная величину
,
можно определить и
-критерий
для коэффициента регрессии при
-м
факторе,
,
а именно:
.
(4.33)
Оценка значимости коэффициентов чистой регрессии по -критерию Стьюдента может быть проведена и без расчета частных -критериев. В этом случае, как и в парной регрессии, для каждого фактора используется формула:
,
(4.34)
где
– коэффициент чистой регрессии при
факторе
,
– среднее квадратическое (стандартное)
отклонение коэффициента регрессии
.
Для уравнения множественной регрессии
среднее квадратическое отклонение
коэффициента регрессии может быть
определено по следующей формуле:
,
(4.35)
где
– среднее квадратическое отклонение
для признака
,
– среднее квадратическое отклонение
для признака
,
– коэффициент детерминации для
уравнения множественной регрессии,
– коэффициент детерминации для
зависимости фактора
со всеми другими факторами уравнения
множественной регрессии;
– число степеней свободы для остаточной
суммы квадратов отклонений.
Как видим, чтобы воспользоваться данной
формулой, необходимы матрица межфакторной
корреляции и расчет по ней соответствующих
коэффициентов детерминации
.
Так, для уравнения
оценка значимости коэффициентов
регрессии
,
,
предполагает расчет трех межфакторных
коэффициентов детерминации:
,
,
.
Взаимосвязь показателей частного
коэффициента корреляции, частного
-критерия
и
-критерия
Стьюдента для коэффициентов чистой
регрессии может использоваться в
процедуре отбора факторов.
