
- •Билет №1.
- •2. Гироскопы. Простой гироскоп. Прецессия гироскопа. Угловая скорость прецессии. Формула гироскопа.
- •Билет №2.
- •1. Закон движения. Скорость. Угловая скорость. Ускорение. Угловое ускорение. Уравнение кинематической связи. Примеры. Инерциальные системы отсчёта.
- •2. Гироскопические силы. Примеры гироскопических сил.
- •Билет №3.
- •Понятие массы, импульса и силы в механике Ньютона. Законы Ньютона. Уравнение движения. Роль начальных условий.
- •Билет №4.
- •1. Законы, описывающие индивидуальные свойства сил. Закон всемирного тяготения. Закон Гука. Законы для сил сухого и вязкого трения. Явление застоя. Явление заноса.
- •2.Количественная характеристика деформаций. Модуль Юнга. Коэффициент Пуассона. Модуль сдвига. Связь между модулем Юнга и модулем сдвига. Энергия упругих деформаций.
- •Билет №5.
- •Тело как система материальных точек. Число степеней свободы системы. Изолированная и замкнутая системы тел. Закон сохранения импульса. Примеры его применения.
- •2.Основы гидро- и аэростатики. Закон Паскаля. Сжимаемость жидкостей и газов. Коэффициент всестороннего сжатия. Распределение давления в покоящейся жидкости (газе) в поле сил тяжести.
- •Билет №6.
- •1. Центр масс. Теорема о движении центра масс. Примеры её применения.
- •2. Барометрическая формула. Закон Архимеда. Условие устойчивого плавания тел.
- •Билет №7.
- •Движение тел с переменной массой. Уравнение Мещерского. Формула Циолковского.
- •Стационарное течение жидкости (газа). Линия тока. Трубка тока. Течение идеальной жидкости. Уравнение Бернулли. Условие применимости уравнения Бернулли.
- •Билет №8.
- •Число Рейнольдса. Критерий Рейнольдса. Вязкость. Сила вязкого трения. Течение вязкой жидкости по трубе. Формула Пуазейля.
- •Билет №9.
- •Соударения тел. Абсолютно упругий и абсолютно неупругий удары. Законы сохранения при соударениях.
- •Ламинарное и турбулентное течение. Число Рейнольдса. Лобовое сопротивление при обтекании тел. Парадокс Даламбера. Циркуляция. Подъёмная сила. Эффект Магнуса.
- •Момент импульса материальной точки. Момент силы. Закон сохранения момента импульса. Пример его применения.
- •Билет №11.
- •1. Неинерциальные системы отсчёта. Движение точки в неинерциальной системе отсчёта. Силы инерции. Переносная и кориолисова силы инерции. Центробежная сила инерции.
- •2.Сложение гармонических колебаний. Фигуры Лиссажу. Биения. Частота бений.
- •Билет №12.
- •1. Законы сохранения в неинерциальных системах отсчёта. Примеры проявления сил инерции на Земле. Принцип эквивалентности Эйнштейна.
- •2. Затухающие колебания. Уравнение затухающих колебаний и его решение. Коэффициент затухания и логарифмический декремент затухания. Случай малого затухания. Время релаксации.
- •Билет №13
- •2. Вынужденные колебания. Процесс установления колебаний. Резонанс. Амплитудная и фазовая резонансные характеристики колебательной системы. Добротность.
- •Билет №14.
- •Преобразования Лоренца. Инварианты преобразований Лоренца. Причинно-следственная связь между событиями.
- •Силы при резонансе (на примере пружинного маятника). Векторная диаграмма сил. Роль внешней силы.
- •Билет №15.
- •Следствие преобразований Лоренца. Относительность одновременности. Замедление хода движущихся часов. Сокращение длины движущихся отрезков.
- •Параметрическое возбуждение колебаний. Автоколебания. Релаксационные колебания. Примеры этих разновидностей колебаний.
- •Билет №16.
- •Преобразования Галилея как предельный случай преобразований Лоренца. Сложение скоростей в релятивистской механике.
- •Свободные колебания систем с двумя степенями свободы. Нормальные колебания (моды). Нормальные частоты. Парциальные колебания. Парциальные частоты.
- •Билет №17.
- •Кинематика твёрдого тела. Поступательное и вращательное движение твёрдого тела. Движение твёрдого тела с одной закреплённой точкой. Карданов подвес.
- •Билет №18.
- •Динамика твёрдого тела. Момент силы. Момент импульса тела. Момент инерции тела относительно оси. Тензор инерции.
- •Волновое уравнение. Решение волнового уравнения. Волны на струне, в стержне, газе. Связь скорости волны со свойствами среды. Поток энергии в бегущей волне.
- •Билет №19.
- •Главные, центральные, свободные оси вращения. Осевые и центробежные моменты инерции. Примеры.
- •Вектор Умова. Два вклада в энергию волны. Соотношения между ними.
- •Билет №20.
- •Теорема Штейнера. Примеры её применения.
- •Отражение и преломление волн на границе раздела двух сред. Основные случаи граничных условий.
- •Билет №21.
- •Вращение твёрдого тела вокруг неподвижной оси. Уравнение моментов. Плоское движение. Мгновенная ось вращения. Уравнение движения и уравнение моментов при плоском движении.
- •Стоячие волны. Распределение амплитуд смещений, скоростей и ускорений «частиц» в стоячей волне. Узлы и пучности. Нормальные колебания стержня, струны, столба газа в трубе.
- •Билет №22.
- •Кинетическая энергия твёрдого тела. Теорема Кенинга. Пример её применения.
- •Ударные волны. Элементы акустики. Звук и его характеристики. Громкость звука. Тембр звука. Эффект Доплера. Бинауральный эффект.
- •Билет №23.
- •Момент силы относительно точки и относительно оси. Момент импульса. Закон сохранения момента импульса. Примеры его применения.
- •Устройство музыкальной шкалы. Музыкальный полутон.
Стационарное течение жидкости (газа). Линия тока. Трубка тока. Течение идеальной жидкости. Уравнение Бернулли. Условие применимости уравнения Бернулли.
Стационарным называется такой ток жидкости или газа, при котором конфигурация линий тока остаётся неизменной.
Линия тока – линия, касательная к которой всюду совпадает по направлению с вектором скорости частиц среды.
Трубка тока – это трубка, ограниченная линиями тока, столь малого сечения, в пределах которого скорости частиц среды одинаковы.
Течение идеальной жидкости:
Идеальной жидкостью называется воображаемая несжимаемая жидкость, в которой отсутствуют вязкость, внутренне трение и теплопроводность. Так как в ней отсутствует внутреннее трение, то нет касательных напряжений между двумя соседними слоями жидкости. Рассмотрим течение идеальной жидкости внутри некоторой трубки тока, обладающей такими сечениями, что скорость молекул жидкости в любой точке каждого из них одинакова. Так как идеальная жидкость несжимаема, то ее масса, сосредоточенная между сечениями S1 и S2 трубки тока, с течением времени не изменяется. Поэтому объемы жидкости dQ, протекшие через эти сечения за промежуток времени dt, будут равны. Поскольку dQ = S·v·dt, то выполняется соотношение: S·v = const (1)
Это выражение называется уравнением неразрывности. Его физический смысл заключается в том, что жидкость нигде не накапливается, т. е. за одинаковый временной интервал в трубку тока втекает и вытекает равное количество жидкости.
Уравнение Бернулли: p + v2/2 + gh = const, всюду вдоль линии тока.
Применимо для:
линии тока
трубки тока
потока в целом (если в пределах любого сечения характеристики потока одинаковы)
для 2-х сечений при условии, что в пределах этих сечений характеристики потока одинаковы
Модель: жидкость несжимаема, трение отсутствует, ток стационарный.
p – статическое давление (измеряется монометрическим зондом)
v2/2 – динамическое давление (измеряется трубкой Пито)
p + v2/2 – полное давление (измеряется трубкой Пито)
gh – давление столба
Билет №8.
Работа силы. Консервативные силы. Энергия как запас работы. Кинетическая и потенциальная энергия системы материальных точек. Связь консервативных сил с потенциальной энергией. Закон сохранения механической энергии. Примеры его применения.
Элементарная работа силы F : dA(Fdr), где dr – элементарное перемещение точки приложения силы F.
Работа
силы
F
на
участке s
-
В физике консервати́вные си́лы (потенциальные силы) — силы, работа которых не зависит от формы траектории (зависит только от начальной и конечной точки приложения сил). Отсюда следует определение: консервативные силы — такие силы, работа которых по любой замкнутой траектории равна 0.
Диссипативными называются такие силы, полная работа которых при любых движениях в замкнутой системе всегда отрицательна.
Потенциальными называют силы, работа которых по замкнутому контуру равна нулю.
Консервативные и потенциальные силы – одно и то же.
К консервативным силам относятся: сила тяжести, гравитационная сила, сила упругости и другие силы.
Неконсервативными силами называются силы, работа которых зависит от пути перехода тела или системы из начального положения в конечное. Работа этих сил на замкнутой траектории отлична от нуля. К неконсервативным силам относятся: сила трения, сила тяги и другие силы.
Консервативной называется система, в которой действуют только консервативные силы.
Так как работа консервативных сил зависит только от начального и конечного положения материальной точки, на которую они действуют, то их работа – это работа, совершаемая при изменении конфигурации тел, то есть изменение потенциальной энергии системы, взятое с обратным знаком. Примеры: сила упругости, сила тяжести, сила тяготения.
Закон сохранения механической энергии – механическая энергия системы тел сохраняется неизменной, если суммарная работа всех внешних сил и сил трения в системе равна нулю. Выводится из законов Ньютона. Пример применения: нахождение минимальной прочности легкой нерастяжимой нити, удерживающей тело массой m при его вращении в вертикальной плоскости (задача Х. Гюйгенса), машина Атвуда.
ЭНЕРГИЯ КАК ЗАПАС РАБОТЫ: Энергией называется одна из двух форм существования материи. Энергия эквивалентна величине запаса работы, как физического понятия, содержащейся в той или иной материальной системе. Энергией W называется способность тела совершать работу. Энергия — Способность тела совершать работу или запас работы. Любая работа, совершаемая над телом, увеличивает его энергию и делает его способным в свою очередь совершать работу.
Кинетической энергией системы называется скалярная величина Т, равная арифметической сумме кинетических энергий всех точек системы
Кинети́ческая
эне́ргия — энергия механической
системы, зависящая от скоростей движения
её точек. Часто выделяют кинетическую
энергию поступательного и вращательного
движения.
Потенциальная энергия системы. Для системы тел, в которой действуют только внутренние консервативные силы, можно ввести понятие потенциальной энергии. Силы, работа которых не зависит от формы перехода системы из начального положения в конечное, а определяется только начальной и конечной конфигурацией системы взаимодействующих тел, называются консервативными (потенциальными). Потенциальная энергия — скалярная физическая величина, характеризующая способность некоего тела (или материальной точки) совершать работу за счет его нахождения в поле действия сил. Основная формула: E=mgh.
Связь консервативных сил с потенциальной энергией: Как потенциальная энергия может быть найдена по известной консервативной силе, так и консервативная сила может быть найдена по потенциальной энергии: