
- •Билет №1.
- •2. Гироскопы. Простой гироскоп. Прецессия гироскопа. Угловая скорость прецессии. Формула гироскопа.
- •Билет №2.
- •1. Закон движения. Скорость. Угловая скорость. Ускорение. Угловое ускорение. Уравнение кинематической связи. Примеры. Инерциальные системы отсчёта.
- •2. Гироскопические силы. Примеры гироскопических сил.
- •Билет №3.
- •Понятие массы, импульса и силы в механике Ньютона. Законы Ньютона. Уравнение движения. Роль начальных условий.
- •Билет №4.
- •1. Законы, описывающие индивидуальные свойства сил. Закон всемирного тяготения. Закон Гука. Законы для сил сухого и вязкого трения. Явление застоя. Явление заноса.
- •2.Количественная характеристика деформаций. Модуль Юнга. Коэффициент Пуассона. Модуль сдвига. Связь между модулем Юнга и модулем сдвига. Энергия упругих деформаций.
- •Билет №5.
- •Тело как система материальных точек. Число степеней свободы системы. Изолированная и замкнутая системы тел. Закон сохранения импульса. Примеры его применения.
- •2.Основы гидро- и аэростатики. Закон Паскаля. Сжимаемость жидкостей и газов. Коэффициент всестороннего сжатия. Распределение давления в покоящейся жидкости (газе) в поле сил тяжести.
- •Билет №6.
- •1. Центр масс. Теорема о движении центра масс. Примеры её применения.
- •2. Барометрическая формула. Закон Архимеда. Условие устойчивого плавания тел.
- •Билет №7.
- •Движение тел с переменной массой. Уравнение Мещерского. Формула Циолковского.
- •Стационарное течение жидкости (газа). Линия тока. Трубка тока. Течение идеальной жидкости. Уравнение Бернулли. Условие применимости уравнения Бернулли.
- •Билет №8.
- •Число Рейнольдса. Критерий Рейнольдса. Вязкость. Сила вязкого трения. Течение вязкой жидкости по трубе. Формула Пуазейля.
- •Билет №9.
- •Соударения тел. Абсолютно упругий и абсолютно неупругий удары. Законы сохранения при соударениях.
- •Ламинарное и турбулентное течение. Число Рейнольдса. Лобовое сопротивление при обтекании тел. Парадокс Даламбера. Циркуляция. Подъёмная сила. Эффект Магнуса.
- •Момент импульса материальной точки. Момент силы. Закон сохранения момента импульса. Пример его применения.
- •Билет №11.
- •1. Неинерциальные системы отсчёта. Движение точки в неинерциальной системе отсчёта. Силы инерции. Переносная и кориолисова силы инерции. Центробежная сила инерции.
- •2.Сложение гармонических колебаний. Фигуры Лиссажу. Биения. Частота бений.
- •Билет №12.
- •1. Законы сохранения в неинерциальных системах отсчёта. Примеры проявления сил инерции на Земле. Принцип эквивалентности Эйнштейна.
- •2. Затухающие колебания. Уравнение затухающих колебаний и его решение. Коэффициент затухания и логарифмический декремент затухания. Случай малого затухания. Время релаксации.
- •Билет №13
- •2. Вынужденные колебания. Процесс установления колебаний. Резонанс. Амплитудная и фазовая резонансные характеристики колебательной системы. Добротность.
- •Билет №14.
- •Преобразования Лоренца. Инварианты преобразований Лоренца. Причинно-следственная связь между событиями.
- •Силы при резонансе (на примере пружинного маятника). Векторная диаграмма сил. Роль внешней силы.
- •Билет №15.
- •Следствие преобразований Лоренца. Относительность одновременности. Замедление хода движущихся часов. Сокращение длины движущихся отрезков.
- •Параметрическое возбуждение колебаний. Автоколебания. Релаксационные колебания. Примеры этих разновидностей колебаний.
- •Билет №16.
- •Преобразования Галилея как предельный случай преобразований Лоренца. Сложение скоростей в релятивистской механике.
- •Свободные колебания систем с двумя степенями свободы. Нормальные колебания (моды). Нормальные частоты. Парциальные колебания. Парциальные частоты.
- •Билет №17.
- •Кинематика твёрдого тела. Поступательное и вращательное движение твёрдого тела. Движение твёрдого тела с одной закреплённой точкой. Карданов подвес.
- •Билет №18.
- •Динамика твёрдого тела. Момент силы. Момент импульса тела. Момент инерции тела относительно оси. Тензор инерции.
- •Волновое уравнение. Решение волнового уравнения. Волны на струне, в стержне, газе. Связь скорости волны со свойствами среды. Поток энергии в бегущей волне.
- •Билет №19.
- •Главные, центральные, свободные оси вращения. Осевые и центробежные моменты инерции. Примеры.
- •Вектор Умова. Два вклада в энергию волны. Соотношения между ними.
- •Билет №20.
- •Теорема Штейнера. Примеры её применения.
- •Отражение и преломление волн на границе раздела двух сред. Основные случаи граничных условий.
- •Билет №21.
- •Вращение твёрдого тела вокруг неподвижной оси. Уравнение моментов. Плоское движение. Мгновенная ось вращения. Уравнение движения и уравнение моментов при плоском движении.
- •Стоячие волны. Распределение амплитуд смещений, скоростей и ускорений «частиц» в стоячей волне. Узлы и пучности. Нормальные колебания стержня, струны, столба газа в трубе.
- •Билет №22.
- •Кинетическая энергия твёрдого тела. Теорема Кенинга. Пример её применения.
- •Ударные волны. Элементы акустики. Звук и его характеристики. Громкость звука. Тембр звука. Эффект Доплера. Бинауральный эффект.
- •Билет №23.
- •Момент силы относительно точки и относительно оси. Момент импульса. Закон сохранения момента импульса. Примеры его применения.
- •Устройство музыкальной шкалы. Музыкальный полутон.
Билет №21.
Вращение твёрдого тела вокруг неподвижной оси. Уравнение моментов. Плоское движение. Мгновенная ось вращения. Уравнение движения и уравнение моментов при плоском движении.
Вращение твердого тела:
Мгновенная
ось вращения проходит через точку
соприкосновения цилиндра и плоскости
(точку М). При таком подходе отпадает
необходимость в уравнении движении
центра масс и уравнении кинематической
связи. Уравнение моментов относительно
мгновенной оси имеет вид:
Здесь
В
проекции на ось вращения (ось y):
Ускорение
центра масс выражается через угловое
ускорение:
Уравнение
моментов:
Плоским называется такое движение твёрдого тела, при котором траектории всех его точек располагаются в параллельных плоскостях.
Мгновенной называется такая ось вращения, при помощи которой движение твердого тела в данное мгновение можно представить как только (чисто) вращательное.
Уравнение движения и уравнение моментов при плоском движении:
Движение
центра масс:
Ур-ние моментов:
Стоячие волны. Распределение амплитуд смещений, скоростей и ускорений «частиц» в стоячей волне. Узлы и пучности. Нормальные колебания стержня, струны, столба газа в трубе.
Уравнение плоской волны: y(x,t) = f(t- x/v) + f(t+x/v),
Стоячая волна – периодическое во времени синфазное колебание с характерным пространственным распределением амплитуды – чередованием узлов и пучностей.
В случае стоячей волны мех. энергия оказывается локализованной в промежутках между соседними узлами и пучностями, переходя из кинетической (в пучностях) в потенциальную (в узлах).
Варианты граничных условий:
закреплённая граница => узел
незакреплённая граница => пучность
Пучность — участок стоячей волны, в котором колебания имеют наибольшую амплитуду. Противоположностью пучности является узел — участок волны, в котором амплитуда колебаний минимальна.
Стоячие волны, волны, возникающие вследствие интерференции волн, распространяющихся во взаимно противоположных направлениях. Практически С. в. возникают при отражениях волн от преград и неоднородностей в результате наложения отражённой волны на прямую. Различные участки С. в. колеблются в одной и той же фазе, но с различной амплитудой (рис.). В С. в., в отличие от бегущей, не происходит течения энергии. Такие волны возникают, например, в упругой системе — стержне или столбе воздуха, находящегося внутри трубы, закрытой с одного конца, при колебаниях поршня в трубе. Бегущие волны отражаются от границ системы, и в результате наложения падающих и отражённых волн в системе устанавливаются С. в. При этом по длине воздушного столба образуются т. н. узлы смещений (скоростей) — плоскости, перпендикулярные к оси столба, на которых смещения частиц воздуха отсутствуют, а амплитуды давлений максимальны, и пучности смещений — плоскости, на которых смещения максимальны, а давления равны нулю. Узлы и пучности смещений располагаются в трубе на расстояниях четверти длины волны, причём у твёрдой стенки образуются всегда узел смещений и пучность давлений.
Нормальными называются такие колебания системы, при которых все части её колеблются по гармоническому закону с одинаковой частотой.
Условия нормальных колебаний струны, стержня, столба газа: L=kλ, или L=(k+1)(λ/2) (в зависимости от граничных условий).