
- •Билет №1.
- •2. Гироскопы. Простой гироскоп. Прецессия гироскопа. Угловая скорость прецессии. Формула гироскопа.
- •Билет №2.
- •1. Закон движения. Скорость. Угловая скорость. Ускорение. Угловое ускорение. Уравнение кинематической связи. Примеры. Инерциальные системы отсчёта.
- •2. Гироскопические силы. Примеры гироскопических сил.
- •Билет №3.
- •Понятие массы, импульса и силы в механике Ньютона. Законы Ньютона. Уравнение движения. Роль начальных условий.
- •Билет №4.
- •1. Законы, описывающие индивидуальные свойства сил. Закон всемирного тяготения. Закон Гука. Законы для сил сухого и вязкого трения. Явление застоя. Явление заноса.
- •2.Количественная характеристика деформаций. Модуль Юнга. Коэффициент Пуассона. Модуль сдвига. Связь между модулем Юнга и модулем сдвига. Энергия упругих деформаций.
- •Билет №5.
- •Тело как система материальных точек. Число степеней свободы системы. Изолированная и замкнутая системы тел. Закон сохранения импульса. Примеры его применения.
- •2.Основы гидро- и аэростатики. Закон Паскаля. Сжимаемость жидкостей и газов. Коэффициент всестороннего сжатия. Распределение давления в покоящейся жидкости (газе) в поле сил тяжести.
- •Билет №6.
- •1. Центр масс. Теорема о движении центра масс. Примеры её применения.
- •2. Барометрическая формула. Закон Архимеда. Условие устойчивого плавания тел.
- •Билет №7.
- •Движение тел с переменной массой. Уравнение Мещерского. Формула Циолковского.
- •Стационарное течение жидкости (газа). Линия тока. Трубка тока. Течение идеальной жидкости. Уравнение Бернулли. Условие применимости уравнения Бернулли.
- •Билет №8.
- •Число Рейнольдса. Критерий Рейнольдса. Вязкость. Сила вязкого трения. Течение вязкой жидкости по трубе. Формула Пуазейля.
- •Билет №9.
- •Соударения тел. Абсолютно упругий и абсолютно неупругий удары. Законы сохранения при соударениях.
- •Ламинарное и турбулентное течение. Число Рейнольдса. Лобовое сопротивление при обтекании тел. Парадокс Даламбера. Циркуляция. Подъёмная сила. Эффект Магнуса.
- •Момент импульса материальной точки. Момент силы. Закон сохранения момента импульса. Пример его применения.
- •Билет №11.
- •1. Неинерциальные системы отсчёта. Движение точки в неинерциальной системе отсчёта. Силы инерции. Переносная и кориолисова силы инерции. Центробежная сила инерции.
- •2.Сложение гармонических колебаний. Фигуры Лиссажу. Биения. Частота бений.
- •Билет №12.
- •1. Законы сохранения в неинерциальных системах отсчёта. Примеры проявления сил инерции на Земле. Принцип эквивалентности Эйнштейна.
- •2. Затухающие колебания. Уравнение затухающих колебаний и его решение. Коэффициент затухания и логарифмический декремент затухания. Случай малого затухания. Время релаксации.
- •Билет №13
- •2. Вынужденные колебания. Процесс установления колебаний. Резонанс. Амплитудная и фазовая резонансные характеристики колебательной системы. Добротность.
- •Билет №14.
- •Преобразования Лоренца. Инварианты преобразований Лоренца. Причинно-следственная связь между событиями.
- •Силы при резонансе (на примере пружинного маятника). Векторная диаграмма сил. Роль внешней силы.
- •Билет №15.
- •Следствие преобразований Лоренца. Относительность одновременности. Замедление хода движущихся часов. Сокращение длины движущихся отрезков.
- •Параметрическое возбуждение колебаний. Автоколебания. Релаксационные колебания. Примеры этих разновидностей колебаний.
- •Билет №16.
- •Преобразования Галилея как предельный случай преобразований Лоренца. Сложение скоростей в релятивистской механике.
- •Свободные колебания систем с двумя степенями свободы. Нормальные колебания (моды). Нормальные частоты. Парциальные колебания. Парциальные частоты.
- •Билет №17.
- •Кинематика твёрдого тела. Поступательное и вращательное движение твёрдого тела. Движение твёрдого тела с одной закреплённой точкой. Карданов подвес.
- •Билет №18.
- •Динамика твёрдого тела. Момент силы. Момент импульса тела. Момент инерции тела относительно оси. Тензор инерции.
- •Волновое уравнение. Решение волнового уравнения. Волны на струне, в стержне, газе. Связь скорости волны со свойствами среды. Поток энергии в бегущей волне.
- •Билет №19.
- •Главные, центральные, свободные оси вращения. Осевые и центробежные моменты инерции. Примеры.
- •Вектор Умова. Два вклада в энергию волны. Соотношения между ними.
- •Билет №20.
- •Теорема Штейнера. Примеры её применения.
- •Отражение и преломление волн на границе раздела двух сред. Основные случаи граничных условий.
- •Билет №21.
- •Вращение твёрдого тела вокруг неподвижной оси. Уравнение моментов. Плоское движение. Мгновенная ось вращения. Уравнение движения и уравнение моментов при плоском движении.
- •Стоячие волны. Распределение амплитуд смещений, скоростей и ускорений «частиц» в стоячей волне. Узлы и пучности. Нормальные колебания стержня, струны, столба газа в трубе.
- •Билет №22.
- •Кинетическая энергия твёрдого тела. Теорема Кенинга. Пример её применения.
- •Ударные волны. Элементы акустики. Звук и его характеристики. Громкость звука. Тембр звука. Эффект Доплера. Бинауральный эффект.
- •Билет №23.
- •Момент силы относительно точки и относительно оси. Момент импульса. Закон сохранения момента импульса. Примеры его применения.
- •Устройство музыкальной шкалы. Музыкальный полутон.
2. Вынужденные колебания. Процесс установления колебаний. Резонанс. Амплитудная и фазовая резонансные характеристики колебательной системы. Добротность.
Вынужденные колебания — колебания, происходящие под воздействием внешних сил, меняющихся во времени.
Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.
Наиболее
простой и содержательный пример
вынужденных колебаний можно получить
из рассмотрения гармонического
осциллятора и вынуждающей силы, которая
изменяется по закону:
Время релаксации - характерное время установления равновесия в системе.
Уравнение вынужденных колебаний: x’’+ 2γx’ + ω02x = f0 sin(ωt) (1)
Решение.
По прошествии времени релаксации: x =X sin (ωt+φ). X=? φ=?
x’ = ωXcos (ωt+φ); x’’ = -ω2 X sin (ωt+φ);
Подставляем в (1): -ω2 X sin (ωt+φ) + 2γ ωXcos (ωt+φ) + ω02 X sin (ωt+φ) = f0 sin(ωt)
При ωt = 0: -ω2 X sin (φ) + 2γ ωXcos (φ) + ω02 X sin (φ) = 0;
tg φ = -2γ ω/ ω02- ω2
1/sin2φ=1+ tg2 φ;
При ωt = π/2: 2γ ωX = - f0 sin(φ);
X=- f0 sin(φ)/ 2γ ω;
В общем виде x = X0 e-γt sin (ω1t+φ) + X sin (ωt+φ).
Каковы бы ни были условия в момент начала действия внешней силы, осциллятор будет совершать одни и те же установившиеся гармонические колебания. Процесс установления колебаний называется переходным режимом. Он происходит потому, что с течением времени затухнут собственные колебания. Время установления колебаний определяется временем затухания колебаний, которые имелись в момент начала действия силы. Даже если начальных колебаний не было, то все равно время установления будет тем же.
Резонанс – резкое возрастание амплитуды вынужденных колебаний, когда частота вынуждающей силы приближается к частоте собственных колебаний системы.
ω2 ≈ ω02 => φx ≈ -π/2
Для
вынужденных колебаний вводят, так
называемые, амплитудно-частотные
(зависимость амплитуды колебаний от
частоты вынуждающей силы) и фазово-частотные
(зависимость сдвига фаз от частоты
вынуждающей силы) характеристики.
Графически эти зависимости при различных
значениях
приведены на рисунках:
Добротность
Q≡
=
=
2π/(1-e-2θ);
при θ
<< 1, или δ
<< ω0,
Q=π/θ.
ωрx2=ω02-2γ2
ωрv2=ω02
ωрa2=ω04/ ω02-2γ2
Произведение крайних равно квадрату средней.
X0(ω=0) =F0/k
A0(ω=0) =F0/m
Куда сдвигается, там и поднимается.
Билет №14.
Преобразования Лоренца. Инварианты преобразований Лоренца. Причинно-следственная связь между событиями.
Лоренца преобразования, в специальной теории относительности — преобразования координат и времени какого-либо события при переходе от одной инерциальной системы отсчёта к другой. Рассмотрим частный случай двух инерциальных систем отсчёта å и å’ с осями х и x’, лежащими на одной прямой, и соответственно параллельными другими осями (у и y’, z и z’). Если система å’ движется относительно å с постоянной скоростью u в направлении оси х, то Л. п. при переходе от å к å’ имеют вид:
,
.
Лоренц-инвариантностью называют свойство какой-нибудь величины сохраняться при преобразованиях Лоренца (обычно имеется в виду скалярная величина).
Л. п. приводят к ряду важных следствий, в том числе к зависимости линейных размеров тел и промежутков времени от выбранной системы отсчёта, к закону сложения скоростей в теории относительности и др. При скоростях движения u<<c, Л. п. переходят в преобразования Галилея, справедливые в классической механике Ньютона.
Чтобы причинно-следственная связь имела объективный характер и не зависела от системы координат, в которой она рассматривается, необходимо, чтобы никакие материальные воздействия, осуществляющие физическую связь событий, происходящих в различных точках, не могли передаваться со скоростью, большей скорости света. Иначе говоря: причинно-следственная связь может иметь место, если s2 > 0. в силу инвариантности интервала.