
- •Основные сведения о матрицах. Операции над матрицами.
- •2.Определитель n-го порядка и их свойства.
- •Определители любого порядка. Свойства определителей.
- •6.Решение системы n линейных уравнений с n неизвестными методом обратных матриц.
- •7. Система m линейных уравнений с n неизвестными. Метод Гаусса.
- •9. Модель Леонтьева многоотраслевой экономики (балансовый анализ).
- •10. Расстояние между двумя точками. Деление отрезка в данном отношении. Площадь треугольника.
- •11. Линии первого порядка на плоскости.
- •12. Параллельность и перпендикулярность прямых.
- •13. Расстояние от точки до прямой.
- •14.Вектор. N-мерное векторное пространство. Линейные операции над векторами.
- •15. Линейная зависимость и независимость векторов. Базис. Разложение вектора по базису.
- •16. Предел функций в точке. Арифметические операций над пределами.
- •Первый замечательный предел
- •Второй замечательный предел
- •18. Бесконечно малые и бесконечно большие функций. Свойства.
- •Свойства бесконечно малых
- •19. Сравнение бесконечно малых.
- •22. Разрывы первого и второго рода.
- •23. Задача о производительности труда. Определение производной. Зависимость между непрерывностью и дифференцируемостью функции.
- •Понятие производной
- •24.Основные правила дифференцирования. Производные элементарных функций. Правила дифференцирования
- •25.Производные обратной и сложной функций.
- •26. Производные и дифференциалы высших порядков.
- •27.Понятие дифференциала функции. Применение дифференциала в приближенных вычислениях.
- •28.Основные теоремы дифференциального исчисления: Ферма, Ролля, Лагранжа.
- •29.Раскрытие неопределенностей.
- •30.Экстремумы функций. Необходимые и достаточные условие экстремума.
- •31.Наибольшее и наименьшее значение функций.
- •32.Выпуклость, вогнутость и точки перегиба кривой.
- •33.Асимптота графика функций. Общая схема исследования и построение графика функций.
- •34.Первообразная функций и неопределенный интеграл. Свойства неопределенного интеграла.
- •41.Дифференциальные уравнения с разделяющимися переменными.
- •42.Однородные линейные дифференциальные уравнения первого порядка.
- •43.Линейные дифференциальные уравнения первого порядка. Использование дифференциальных уравнении в экономике.
- •44. Определение функции двух переменных. Линии и поверхности уровня функции двух переменных.
- •45. Частные производные. Полное производное и полный дифференциал.
- •46. Производная по направлению. Градиент функции.
- •47. Экстремум функции многих переменных (необходимое и достаточное условия).
- •48. Наибольшее и наименьшее значения функции.
- •49. Метод Лагранжа.
- •50. Классическое и статистическое определение вероятности.
- •51. Элементы комбинаторики.
- •52. Теоремы сложения и умножения вероятностей.
- •53. Условная вероятность. Теорема сложения вероятностей для совместных событий.
- •54. Формула полной вероятности. Формула Бейеса.
- •55. Формула Бернулли. Формула Пуассона.
- •56. Понятие случайной величины. Закон распределения дискретных случайных величин.
- •57. Числовые характеристики дискретных случайных величин.
- •58. Биноминальный закон распределения.
- •59. Непрерывная случайная величина. Закон распределения вероятностей и основные числовые характеристики.
- •60. Функция плотности вероятностей.
- •61. Нормальное распределение.
- •62. Неравенство и теорема Чебышева. Закон больших чисел.
- •63. Задача математической статистики. Выборочный метод. Статистические оценки параметров распределения.
- •64. Несмещенные, эффективные и состоятельные оценки.
- •65. Интервальная оценка.
- •66. Корреляционный анализ. Линейная регрессия. Коэффициент корреляции.
27.Понятие дифференциала функции. Применение дифференциала в приближенных вычислениях.
Пусть приращение функции y=f(x) разбито на сумму двух членов: Δy = A Δx+Δ, где А не зависит от Δx (т.е. постоянно при данном значении аргумента x) и Δ имеет высший порядок относительно Δx (при Δx > 0). Тогда первый член, пропорциональный Δx, называется дифференциалом функции f(x) и обозначается dy или df(x).
Пусть нам известно значение функции y0=f(x0) и ее производной y0' = f '(x0) в точке x0. Покажем, как найти значение функции в некоторой близкой точке x.Как мы уже выяснили приращение функции Δyможно представить в виде суммы Δy=dy+α·Δx, т.е. приращение функции отличается от дифференциала на величину бесконечно малую. Поэтому, пренебрегая при малых Δx вторым слагаемым в приближенных вычислениях, иногда пользуются приближенным равенством Δy≈dyили Δy»f'(x0)·Δx.Т.к., по определению, Δy = f(x) – f(x0), то f(x) – f(x0)≈f'(x0)·Δx.Откуда
f(x) ≈ f(x0) + f'(x0)·Δx |
28.Основные теоремы дифференциального исчисления: Ферма, Ролля, Лагранжа.
Теорема
(Ролля). Пусть
функция f(x) непрерывна на [a,b] и
дифференцируема на (a,b) , f(a) = f(b). Тогда
внутри отрезка существует по крайней
мере одна точка
,
такая, что f(
)
= 0.
данная теорема справедлива и в том случае, когда на концах отрезка функция не обращается в ноль, но принимает равные значения. Геометрический смысл данной теоремы следующий: если непрерывная кривая пересекает ось в двух точках , или принимает в них равные значения, то, по крайней мере, в одной точке между и касательная к кривой параллельна оси .
Необходимо отметить, что если не во всех точках у рассматриваемой функции существует производная, то теорема может не выполняться.
Теорема (Лагранжа). Пусть функция f(x) непрерывна на [a,b] и дифференцируема на (a,b). Тогда внутри отрезка существует по крайней мере одна точка , такая, что
f'( ) = (f(b)-f(a))/(b-a). Геометрический смысл теоремы Лагранжа следующий: внутри отрезка существует, по крайней мере, одна точка, в которой касательная параллельна хорде, стягивающей кривую на данном отрезке. В частности, при теорема переходит в теорему Ролля. Теорема (теорема Ферма). Пусть функция y = f(x) определена в интервале (a, b) и принимает в некоторой точке x0 ∈ (a, b) наибольшее (наименьшее) значение. Тогда, если эта функция дифференцируема в рассматриваемой точке, то её производная равна нулю. |
29.Раскрытие неопределенностей.
Неопределенности
типа
Пусть заданы две функции f (x) и g (x), такие, что
В
этом случае говорят, что функция
имеет
неопределенность типа
в
точке x
= a.
Чтобы найти предел при x
= a
когда функция
содержит
неопределенность
,
нужно разложить на множители числитель
и/или знаменатель и затем сократить
члены, стремящиеся к нулю.
Примечание:
В данном разделе при вычислении пределов
не используется правило
Лопиталя.
Неопределенности
типа
Пусть две функции f (x) и g (x) обладают свойством
где a является действительным числом, либо стремится к + ∞ или − ∞. Говорят, что в этом случае функция имеет в точке a неопределенность типа . Для вычисления предела в этой точке необходимо разделить числитель и знаменатель на x в наивысшей степени.
Неопределенности
типа
Неопределенности этих типов сводятся к рассмотренным выше неопределенностям типа и .