Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_po_lektsiam_po_nevrologii_TsNS.doc
Скачиваний:
10
Добавлен:
14.04.2019
Размер:
493.57 Кб
Скачать

2. Закономерности строения простейшей рефлекторной дуги

Простая рефлекторная дуга состоит из двух нейронов: афферентного и эфферентного. В ней импульс продвигается от чувствительного нервного окончания, принадлежащего аксону афферентного нейрона к его телу, где переходит на дендриты, которые контактируют с эфферентным нейроном и по его аксону достигает органа. Такая дуга характерна для вегетативной системы.

Сложная рефлекторная дуга включает цепочку нейронов от трех и более. В ней между афферентным (рецепторным) и эфферентным (исполнительным) нейронами располагается один, а чаще несколько ассоциативных нейроцитов. Таких дуг больше встречается в соматической системе.

На основе построения рефлекторных дуг отечественные ученые И. М. Сеченов, С. П. Боткин, И. П. Павлов, П. К. Анохин, Н. М. Бехтерева разработали и усовершенствовали теорию нервизма. И. М. Сеченов предложил идею причинности (детерминизма), по которой считал, что всякое явление в организме имеет причину и в ответ на ее воздействие возникает рефлекторная реакция. И. П. Павлов доказал, что все виды деятельности обусловлены рефлексами. Простые, врожденные, видовые формы жизнедеятельности (инстинкты) возникают на основе безусловных рефлексов. Сложные формы, социально-интеллектуальные, работают на основе условных рефлексов. Благодаря рефлексам формируется первая и вторая сигнальные системы, деятельность которых обеспечивается рефлекторными дугами анализаторов. П. К. Анохин установил обратную связь любого органа с нервными центрами. Н. М. Бехтерева открыла в 80-е годы прошлого века особые «смысловые» нейроны, осуществляющие аналитический выбор и передачу информации.

П. К. Анохин и его ученики подтвердили наличие обратной связи между органами и нервными центрами. Она возникает за счет "обратной афферентации" после того, как эфферентный нейрон включил в работу орган. Благодаря обратной связи мозг получает постоянно информацию о работе органов и через эффекторные нейроны регулирует её. Наличие двусторонней связи осуществляют нейроны, замкнутые в рефлекторную кольцевую цепь. Механизм обратной связи обеспечивает приспособление живых организмов к окружающей среде. Кольцевое построение рефлекторных дуг делает их замкнутыми, до этого существовало мнение о незамкнутых рефлекторных дугах.

3. Понятие о теориях принципиального строения нервной системы

Устройство и работу нервной системы рассматривает несколько теорий:

  • теория нервизма, основанная на условных и безусловных рефлексах (И. М. Сеченов, И. П. Павлов);

  • теория психоанализа, рассматривающая взаимоотношения сознательного и бессознательного в управлении организмом (З. Фрейд);

  • теория взаимодействия функциональных систем – сенсорных, двигательных, вегетативных (П. К. Анохин);

  • нейроэндокринная теория, считающая, что управление организмом осуществляется не только нервно-электрическими импульсами, но и гуморальными факторами гормонами, нейротрансмиттерами и нейротрофинами (Г. Селье).

Положение о том, что нейроны гибнут и не восстанавливаются (Рамон-и-Кахал) к настоящему времени пересмотрено, так как установлено, что нейрогенез продолжается и во взрослом мозге. Он осуществляется стволовыми клетками, располагающимися в эпендимной и субэпендимной зонах желудочков головного мозга и центрального канала спинного мозга. Эти клетки могут превращаться в любые клетки разных тканей, в том числе и крови. В мозге же они дифференцируются в нейроны, астроциты и олигодендроглию. Уже известно, что из них возникают мотонейроны передних рогов спинного мозга, но пока нет данных о формировании из них больших пирамидных клеток Беца. Нейрогенез стимулируется разными факторами. как нормальными, так и патологическими. Например, возрастание функциональной активности мозга или глобальная ишемия усиливают дифференцировку стволовых клеток, и это рассматривается как компенсаторная реакция.

Убеждение о высокой чувствительности нервных клеток к повреждению опровергается новыми исследованиями, доказавшими что жизнеспособность синаптических связей сохраняется от 10-30 минут до 2-3 и более часов, особенно, если приняты меры по снижению биохимической и физиологической активности нейронов (охлаждение, медикаментозные блокады, кислород, глюкоза и др.). Структурно-функциональное восстановление возможно даже для ганглионарных клеток глазной сетчатки с появлением возможности различать ими свет и темноту. Взгляд на перестройку нейронов после повреждения прошел путь от отрицания её, потом до признания медленной и ограниченной перестройки, а сейчас до описания очень быстрых и практически не ограниченных перестроек. Нейроны, потерявшие афферентные связи, уже через несколько минут или часов начинают отвечать на стимуляцию соседних интактных зон и чем интенсивнее она проводится, тем быстрее восстанавливаются клетки. В процессах восстановления нейронов обязательно участвуют иммунные клетки мозга, вплоть до собственной гибели.

По современным представлениям синапс далеко не единственная форма коммуникации нейронов. Да и в самой синаптической щели установлены новые структуры — синаптомы. Посредники в передаче импульса всё чаще стали называться трансмиттерами и, кроме классических медиаторов ацетилхолина и норадреналина, к ним относят многие другие: дофамин, серотонин, глютамат (ГАМК), опиаты (эндорфины и энкефалины). Они составляют разнообразные и многочисленные комбинации в синапсе. Одиночный нейрон, таким образом, представляет гибкую систему с вариабельным набором посредников, что позволяет ему работать с сигналами гораздо с большим разнообразием, чем считалось ранее. При закладке, развитии и перестройке нервной системы трансмиттеры, кроме того, управляют пролиферацией нервных и глиальных клеток, так как обладают нейротрофической функцией. Они способны не только к локальному действию в синапсе, но и участвуют в объемных коммуникациях нейронов и регулируют локальный кровоток в мозге. Поэтому нейроны, иммунные и другие клетки мозга обладают рецепторами для восприятия нейротрансмиттеров.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]