Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на емм.docx
Скачиваний:
8
Добавлен:
22.12.2018
Размер:
278.58 Кб
Скачать

Принцип оптимальності

З викладених у попередніх параграфах міркувань можна висновувати, що для прийняття оптимального рішення на k-му кроці багатокрокового процесу потрібна оптимальність рішень на всіх його попередніх кроках, а сукупність усіх рішень дає оптимальний розв’язок задачі лише в тому разі, коли на кожному кроці приймається оптимальне рішення, що залежить від параметра етапу , визначеного на попередньому кроці.

Цей факт є основою методу динамічного програмування і є сутністю так званого принципу оптимальності Р. Белмана, який формулюється так:

Оптимальний розв’язок багатокрокової задачі має ту властивість, що яким би не був стан системи в результаті деякої кількості кроків, необхідно вибирати управління на найближчому кроці так, щоб воно разом з оптимальним управлінням на всіх наступних кроках приводило до максимального виграшу на всіх останніх кроках, включаючи даний.

Доведемо справедливість такого твердження, міркуючи від супротивного. Нехай маємо задачу на максимізацію функції і вектор є її оптимальним планом (стратегією, поведінкою) n-крокового процесу (n-вимірної задачі) з початковим параметром стану b.

Принцип оптимальності еквівалентний твердженню, що вектор повинен бути оптимальним планом -крокового процесу -вимірної задачі з початковим параметром стану , що дорівнює . Припустимо протилежне, тобто що вектор не є оптимальним планом відповідного процесу, а ним є якийсь інший план . Тоді дістанемо:

,

але

,

що суперечливо. Отже, принцип оптимальності доведено.

  1. Як визначити, що виробництво продукції є нерентабельним (рентабельним)?

Оцінку рентабельності продукції, що виготовляється на підприємстві, можна здійснювати за допомогою двоїстих оцінок та обмежень двоїстої задачі, які характеризують кожний вид продукції. Ліва частина кожного обмеження двоїстої задачі є вартістю відповідних ресурсів, які використовують для виробництва одиниці j-ї продукції. Якщо ця величина перевищує ціну одиниці продукції (сj), то виготовляти таку продукцію невигідно, вона нерентабельна і в оптимальному плані прямої задачі відповідна їй змінна хj = 0. Якщо ж загальна оцінка всіх ресурсів дорівнює ціні одиниці продукції, то виготовляти таку продукцію доцільно, вона рентабельна і в оптимальному плані прямої задачі відповідна змінна хj > 0. Підставимо значення оптимального плану двоїстої задачі Y* у її систему обмежень. Якщо вартість ресурсів на виробництво одиниці продукції (ліва частина обмеження) перевищує ціну цієї продукції (права частина обмеження), то виробництво такої продукції для підприємства недоцільне. Якщо ж співвідношення виконується як рівняння, то продукція рентабельна.

6. Що означає "правильне відтинання"?

Алгоритм, запропонований Гоморі, передбачає застосування досить простого способу побудови правильного відтинання.

Нехай маємо задачу цілочислового програмування:

(6.5)

за умов:, (6.6)

, (6.7)

— цілі числа . (6.8)

Допустимо, що параметри — цілі числа. Не враховуючи умови цілочисловості, знаходимо розв’язок задачі (6.5)—(6.7) симплексним методом. Нехай розв’язок існує і міститься в симплексній таблиці. Розглянемо довільний оптимальний план задачі (6.5) —(6.7). Виразимо в цьому плані базисну змінну через вільні змінні: . (6.9) Виразимо коефіцієнти при змінних даного рівняння у вигляді суми їх цілої та дробової частин. Введемо позначення: — ціла частина числа b, — дробова частина числа b. Отримаємо: , (6.10)

або

. (6.11) Отже, рівняння (6.11) виконується для будь-якого допустимого плану задачі (6.5)—(6.7). Допустимо тепер, що розглянутий план є цілочисловим оптимальним планом задачі. Тоді ліва частина рівняння (6.11) складається лише з цілих чисел і є цілочисловим виразом. Отже, права його частина також є цілим числом і справджується рівність:

, (6.12) де N — деяке ціле число. Величина N не може бути від’ємною. Якщо б , то з рівняння (6.12) приходимо до нерівності:

. Звідки . Тобто це означало б, що дробова частина перевищує одиницю, що неможливо. У такий спосіб доведено, що число N є невід’ємним. Якщо від лівої частини рівняння (6.12) відняти деяке невід’ємне число, то приходимо до нерівності: ,(6.13) яка виконується за допущенням для будь-якого цілочислового плану задачі (6.5)—(6.7). У такий спосіб виявилося, що нерівність (6.13) є шуканим правильним відтинанням.