Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Классификация Флинна.doc
Скачиваний:
11
Добавлен:
21.12.2018
Размер:
647.68 Кб
Скачать

7.2. С перекрестной коммутацией.

Мультипроцессорные системы, построенные по принципу осуществления связей между модулями посредством "прямоугольной решетки" соединительных шин, которые могут контактировать в любой точке их пересечения, называют системами с перекрестной коммутацией (рис 7.2.1).

Такая организация системы позволяет устанавливать контакт между любыми двумя блоками системы на все время обмена информацией. В отличие от коммутации с временным разделением, реализуемым в системах с общей шиной, рассматриваемый метод переключения связей часто называют коммутацией с пространственным разделением.

Перекрестный коммутатор является "неблокирующимся" в том смысле, что передача через него может быть запрещена из-за отсутствия путей передачи. Существует возможность установить одновременно несколько путей передачи информации в системе. В то же время следует иметь в виду, что коммутатор может быть заблокирован, если одно из соединяемых устройств уже занято.

Одной из ранних структур, в которой реализован принцип перекрестной коммутации, явилась система, получившая название "полиморфная ЭВМ" (рис. 7.2.2). Модули ЭВМ, включающие блоки процессоров и памяти, могли осуществлять связь с периферийными устройствами через центральный коммутатор.

В данной системе была сделана попытка организовать соединения непосредственно между процессорами и перекрестный доступ к памяти путем замыкания соответствующего набора пересечений. Сложность такого способа связи между процессорами и блоками памяти, неэффективность использования оборудования (процессор и память одного единственного модуля, имея единственную шину связи, "мешают" друг другу) выявляют недостатки структуры "полиморфной ЭВМ" по сравнению со структурой системы, приведенной на рис. 7.2.1

Мультипроцессорные системы с перекрестной коммутацией, обладая несколько меньшей гибкостью, чем системы с общей шиной, позволяют тем не менее сравнительно просто вводить новые модули, если коммутационная матрица обладает достаточной емкостью. Матрица полностью отделена от других функциональных блоков и может быть построена также но модульному принципу, что допускает ее расширение. Однако вследствие сложности функций коммутатора, структура его может существенно усложниться.

Для обеспечения большей гибкости и увеличения возможностей по расширению в системе может быть введена дополнительная коммутационная матрица устройств ввода-вывода. Такой коммутатор связывается с центральным через процессоры управления вводом-выводом (рис. 7.2.3), при этом устройства ввода- вывода могут подсоединяться к любому каналу. Рассмотренная структура мультипроцессорных систем используется в больших вычислительных системах фирмы "Burroughs" (США).

Оригинальный вариант организации мультипроцессорной конфигурации предложен для системы Multi-Interpreter фирмы "Burroughs", в которую введена группа однотипных процессорных блоков с микропрограммным управлением. Путем перезагрузки блоков микропрограммной памяти одни и те же модули используются в качестве центральных процессоров либо контроллеров ввода - вывода. Благодаря этому все процессоры, модули памяти и периферийные устройства подключены к общей коммутационной матрице (рис. 7.2.4).

Мультипроцессорными системами с перекрестной коммутацией, кроме уже упомянутых зарубежных ЭВМ, являются отечественная вычислительная система высокой производительности "Эльбрус-1" и вычислительный комплекс СМ-2-одна из моделей СМ ЭВМ.

Рассмотрим подробнее структуру вычислительного комплекса СМ-2 (рис. 7.2.5). В этой системе используется модульная структура коммутатора. Восьмиканальный (КМР-8) и четырех- канальный (КМР-4) коммутаторы обеспечивают внутрисистемные связи между устройствами данного ВК. На их основе строится общий распределенный коммутатор, с помощью которого реализуется полная матричная коммутация каждого процессора и канала прямого доступа в память (КПДП) с каждым устройством оперативной памяти (УОП) и согласователем ввода-вывода (СВВ), выполняющим роль контроллера.

Канал прямого доступа в память является устройством, обеспечивающим быстрый обмен информацией между УОП и периферийными устройствами. Он выполняет операции ввода-вывода независимо от процессора. Взаимное влияние этих устройств проявляется только при попытке одновременного обращения к одному и тому же модулю памяти. При этом приоритет предоставляется каналу, а работа процессора задерживается на время одного цикла обращения к памяти. Обмен информацией с устройствами, подключенными непосредственно через КПДП, может осуществляться со скоростью до 1100000 байт/с. Канал может одновременно обслуживать одно устройство, подключенное непосредственно через КПДП, пли не более четырех устройств ввода-вывода, подключенных через СВВ. В последнем случае скорость обмена меньше л составляет до 550 000 байт/с.

Согласователь ввода-вывода имеет 16 выходов на интерфейс позволяет через один блок подключать до 16 периферийных устройств. С помощью КМР-4 СВВ подключается к процессорам и КПДП.

Рассмотрение структуры вычислительного комплекса СМ-2 позволяет еще раз отметить основные достоинства мультипроцессорных систем с перекрестной коммутацией, в которых обмен информацией возможен одновременно по нескольким путям передачи данных. При этом эффективная скорость передачи может быть выше, чем, например, в системе с временным разделением общей шины, так как контакт устанавливается между взаимодействующими модулями на все время обмена информацией. Благодаря такой системе организации связей не возникают проблем при параллельной работе процессоров. В мультипроцессорной системе с перекрестной коммутацией упрощаются интерфейсы отдельных блоков, поскольку адресация данных и разрешение конфликтов, возникающих при обращении к одному модулю от нескольких источников, осуществляется логикой коммутационной матрицы.

Возникновение конфликтов в коммутационной матрице является в то же время основной причиной снижения эффективности мультипроцессоров с перекрестной коммутацией. Задержки доступа к памяти, вызванные тем, что она используется другими процессорами или устройствами ввода-вывода, снижают быстродействие процессоров и, следовательно, системы в целом.

Полностью лишены недостатков, присущих МПВК с общей шиной, МПВК с перекрестной коммутацией. Идея структурной организации таких ВК заключается в том, что все связи между устройствами осуществляются с помощью специального устройства - коммутационной матрицы. Коммутационная матрица (КМ) позволяет связывать друг с другом любую пару устройств, причем таких пар может быть сколько угодно: связи не зависят друг от друга.

В МПВК с перекрестной коммутацией нет конфликтов из-за связей, остаются только конфликты из-за ресурсов. Возможность одновременной связи нескольких пар устройств позволяет добиваться очень высокой производительности комплекса. Важно отметить и такое обстоятельство, как возможность установления связи между устройствами на любое, даже на длительное время, так как это совершенно не мешает работе других устройств, зато позволяет передавать любые массивы информации с высокой скоростью, что также способствует повышению производительности комплекса. Заметим, что в МПВК с общей шиной передача информации массивами, т.е, занятие шины одной парой устройств на длительный отрезок времени, обычно допускается лишь в крайних случаях, так как это приводит к длительным простоям остальных устройств.

Кроме того, к достоинствам структуры с перекрестной коммутацией можно отнести простоту и унифицированность интерфейсов всех устройств, а также возможность разрешения всех конфликтов в коммутационной матрице. Важно отметить и то, что нарушение какой-то связи приводит не к выходу из строя всего комплекса, а лишь к отключению какого-либо устройства, т.е. надежность таких комплексов достаточно высока. Однако и организация МПВК с перекрестной коммутацией не свободна от недостатков.

Прежде всего - сложность наращивания ВК. Если в коммутационной матрице заранее не предусмотреть большого числа входов, то введение дополнительных устройств в комплекс потребует установки новой коммутационной матрицы. Существенным недостатком является и то, что коммутационная матрица при большом числе устройств в комплексе становится сложной, громоздкой и достаточно дорогостоящей. (Надо учитывать то обстоятельство, что коммутационные матрицы строятся обычно на схемах, быстродействие которых существенно выше быстродействия схем и элементов основных устройств, - только при этом условии реализуются все преимущества коммутационной матрицы.) Это обстоятельство в значительной степени усложняет и удорожает комплексы.

Для того чтобы упростить и удешевить ВК, коммутацию устройств осуществляют с помощью двух и даже более коммутационных матриц. Перекрестная коммутация довольно широко используется при построении ВК, в частности практически всех МПВК фирмы "Барроуз" (в том числе и упомянутого выше комплекса D-825).

В МПВК с многовходовыми ОЗУ все, что связано с коммутацией устройств, осуществляется в ОЗУ. В этом случае модули ОЗУ имеют число входов, равное числу устройств, которые к ним подключаются, т. е. для каждого устройства предусматривается свой вход в ОЗУ. В отличие от ВК с перекрестной коммутацией, которые -имеют централизованное коммутационное устройство, в МПВК с многовходовыми ОЗУ средства коммутации распределены между несколькими устройствами. Такой способ организации МПВК сохраняет все преимущества систем с перекрестной коммутацией, несколько упрощая при этом саму систему коммутации. Для наращивания системы должны быть предусмотрены дополнительные входы в ОЗУ. Правда, введение дополнительных модулей ОЗУ не вызывает затруднений.