Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2 Глава_1-2-3-4-5-6-7-8-9-10.doc
Скачиваний:
15
Добавлен:
15.12.2018
Размер:
1.18 Mб
Скачать

§ 2.2. Дифференциальная игра: общее решение

Дадим вначале некоторые комментарии по вопросу существования решения задачи. Предполагая, что функции , достаточно гладкие, , введем функцию стоимости игры

, (2.3)

где дифференцируемая функция при любых допустимых стратегиях игроков . Уравнение Гамильтона-Якоби будет иметь вид

(2.4)

Здесь − гамильтониан

(2.5)

При незаданном времени окончания переходного процесса (задача стабилизации), т.е. при и , учитывая, что в явном виде не зависит от времени, будем иметь

(2.6)

с граничным условием , так как .

Перепишем (2.6) в виде

(2.7)

Определим управления и с точностью до так, чтобы последние два слагаемых (2.7) равнялись нулю, т.е.

. (2.8)

Тогда уравнение Гамильтона-Якоби примет вид

(2.9)

Исходная система с управлениями (2.8) определяется выражением

Отметим, что при

, (2.10)

уравнение (2.9) вместе с канонической системой

образуют необходимые условия оптимальности системы (2.1) с управлениям

. (2.11)

Как будет показано дальше, матрицы и , при всех и параметрах системы и , должны назначаться так, чтобы матрица

(2.12)

была бы положительно полуопределенной.

Очевидно, что для реализации управлений вида (2.8) необходимо решить уравнение (HJ) в частных производных, что является самостоятельной сложной задачей.

Кроме того,

1. может и не существовать;

2. если и можно найти , то нет гарантии, что функция времени - градиент , вычисленный в точке , есть дополнительный вектор , соответствующий и т.е. нет уверенности, что существует зависимость

(2.13)

Пусть , где Х – область, содержащая S. Обозначим минимум (наибольшую нижнюю границу) функции через :

. (2.14)

Управления , при котором достигается , обозначим через .

Таким образом, - допустимые и в силу (2.14) оптимальные управления.

Предположим также:

1. для

2. непрерывно дифференцируема на X.

В силу оптимальности можно записать, что:

(2.15)

для Таким образом, при предположениях 1 и 2 уравнение (2.15) является дополнительным необходимым условием оптимальности.

Если на правом конце задано условие , то

(2.16)

и вектор , удовлетворяет следующему соотношению:

Покажем, что при некоторых предположениях относительно управляющих воздействий, справедлива зависимость (1).

Лемма 2.2.1

Пусть имеются допустимые управления и при этом:

  1. переводят в S;

  2. имеется траектория , соответствующая , то для всех ;

  3. удовлетворяют соотношению для всех , где являются решением уравнения Гамильтона-Якоби, то есть оптимальные управления к множеству допустимых управлений, производящих траектории, которые целиком расположены в X ,

тогда .

Доказательство

Для сокращения записи введем обозначение

,

.

Тогда

, (2.17)

и

(2.18)

Продифференцируем выражение (2.18) по . Будем иметь

(2.19)

Выражения в квадратных скобках при на оптимальной траектории обращаются в нуль. Используя (2.19), преобразуем (2.18) к виду

(2.20)

Кроме того, условие (2.16) определяет значение . Отметим, что уравнение (2.20) совместно с уравнением (2.16) образует систему уравнений Эйлера – Лагранжа.

Таким образом, если имеются допустимые управления и при этом:

  • переводят в S;

  • имеется траектория , соответствующая , то для всех ;

  • удовлетворяют соотношению для всех , где являются решением уравнения Гамильтона-Якоби, то есть оптимальные управления к множеству допустимых управлений, производящих траектории, которые целиком расположены в X .

Рассмотрим каждое из составляющих необходимых условий оптимальности.

1. Первое уравнение (для ) канонической системы

есть в точности исходная система уравнений, описывающая объект управления, которая не зависит от дополнительной переменной . Второе уравнение (для ) канонической системы описывает движение нормали к гиперплоскости вдоль оптимальной траектории. Уравнение имеет множество решений, каждое из которых описывает движение соответствующей нормали к гиперплоскости вдоль оптимальной траектории. Каноническая система имеет решения вдоль любой траектории системы, а не только для оптимального управления.

2. Первое свойство дополнительной переменной состоит в том, что оптимальное управление является точкой стационарности гамильтониана (2.5).

3. Формулировка необходимых условий не зависит от типа области S значений конечных состояний системы и от того, фиксировано или нет время окончания переходного процесса.

4. Необходимые условия оптимальности, сформулированные в виде поведения гамильтониана на оптимальной траектории, непосредственно зависят от того, является ли время окончания переходного процесса фиксированным или нет. Гамильтониан постоянен вдоль оптимальной траектории лишь в случае, когда система и функционал явно не зависят от времени.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]