Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Гущина - 2.doc
Скачиваний:
6
Добавлен:
06.12.2018
Размер:
570.37 Кб
Скачать

2. Основные циклы газотурбинных установок

Одним из основных недостатков, присущих поршневым двигателям внутреннего сгорания, является неизбежная неравномер­ность работы двигателя во времени — в течение цикла температуры и давления в цилиндре резко меняются; для преобразования возвратно-по­ступательного движения поршня во вращательное неизбежно примене­ние кривошипно-шатунного механизма. Средняя скорость рабочего тела относительно двигателя невелика. Все эти обстоятельства не позволяют при создании двигателей внутреннего сгорания сосредоточить большую мощность в одном агрегате.

От этих недостатков свободен двигатель внутреннего сгорания дру­гого типа — газотурбинная установка. Цикл газотурбинной установки со­стоит из тех же процессов, что и цикл поршневого двигателя внутренне­го сгорания, но существеннейшее различие заключается в следующем: если в поршневом, двигателе эти процессы происходят последовательно, один за другим, в одном и том же элементе двигателя — цилиндре, то в газотурбинной установке эти процессы происходят в различных элемен­тах этой установки и, таким образом, в ней нет такой неравномерности условий работы элементов двигателя, как в поршневом двигателе. В газотурбинных установках средняя скорость рабочего тела в 50— 100 раз выше, чем в поршневых двигателях. Все это позволяет сосредо­точить в малогабаритных газотурбинных установках большие мощности. Термический КПД газотурбинных установок высок. Эти важные преи­мущества делают газотурбинную установку весьма перспективным дви­гателем. Пока еще ограниченное применение газовых турбин в высоко­экономичных крупных энергетических установках объясняется в основ­ном тем, что из-за недостаточной жаропрочности современных конструк­ционных материалов такая турбина может надежно работать в области температур, меньших области температур в двигателях внутреннего сгорания поршневого типа (ибо в поршневых двигателях температура ра­бочего тела меняется во времени и, следовательно, тепловой режим ра­боты поршня, стенок цилиндра и других узлов является не очень напря­женным, тогда как в газотурбинной установке многие конструкционные элементы работают в условиях постоянного воздействия высоких тем­ператур); это обстоятельство приводит к снижению термического КПД установки. Дальнейший прогресс в создании новых жаропрочных мате­риалов позволит газовой турбине работать в области более высоких тем­ператур.

В настоящее время газотурбинные двигатели широко применяются в авиации, на магистральных газопроводах, на колесных и гусеничных машинах, во флоте, в некоторых странах применяются на железнодо­рожном транспорте.

Циклы газотурбинных установок разделяются на две основные груп­пы: со сгоранием р=const; со сгоранием при V=const.

Таким образом, газотурбинные установки классифицируются по то­му же признаку, что и поршневые двигатели внутреннего сгорания, — по способу сжигания топлива.

3. Расчёт циклов газотурбинных установок

Принимаем по заданию:

Рис.1. Схема ГТУ при p=const

Сгорание топлива происходит в камере сгорания при p=const. Продукты сгорания, расширившись в соплах 5 газовой турбины, попада­ют на лопатки 6 турбины, производят там работу за счет своей кинети­ческой энергии и затем выбрасываются в атмосферу через выпускной патрубок 7. Давление отработавших газов несколько превышает атмос­ферное (поскольку отработавшим газам нужно преодолеть сопротивле­ние выходного патрубка).

Идеализированный цикл рассматриваемой газотурбинной установки изображен в р, υ-диаграмме на рис. 1.

Принцип построения этого идеализированного цикла такой же, как использованный ранее для поршневых двигателей: предполагается, что цикл замкнутый, т. е. количество рабочего тела в цикле сохраняется по­стоянным; выход отработавших газов в атмосферу заменяется изобар­ным процессом с отводом теплоты к холодному источнику; считается, что теплота q1 подводится к рабочему телу извне, через стенки корпуса установки, а рабочим телом турбины является газ неизменного состава, например чистый воздух.

В р,υ-диаграмме на рис.1 процесс 1-2 представляет собой сжа­тие воздуха в компрессоре. По изоба­ре 2-3 к рабочему телу подводится теплота (этот процесс соответствует сгоранию топлива в камере сгорания). Далее рабочее тело (в действи­тельном цикле — это воздух и продукты сгорания) адиабатно расши­ряется в сопловом аппарате турбины и отдает работу турбинному коле­су (3-4). Изобарный процесс 4-1 соответствует выходу отработавших газов из турбины.

Определим термический КПД цикла газотурбинной установки со сгоранием при p=const, иногда называемого циклом Брайтона. Как и раньше, считаем рабочее тело идеальным газом с постоянной теплоем­костью.

Значение ηт рассматриваемой установки будет различным — изотер­мическим, адиабатным или политропным в зависимости от процесса сжатия, осуществляемого в компрессоре.

Рассмотрим вначале цикл газотурбинной установки со сгоранием при p=const с изотермическим сжатием воздуха в компрессоре.

Может возникнуть вопрос — почему при рассмотрении поршневых двигателей внутреннего сгорания мы считаем процесс выхлопа, происходящим по изохоре, а для газотурбинной установки — по изобаре? Дело в том, что поршневой двигатель является машиной периодического действия (т. е. параметры рабочего тела в фиксированной точке цилиндра меняются с течением времени), а турбина является машиной непрерыв­ного действия (в стационарном режиме работы параметры рабочего тела неизменны во времени). Следовательно, давление отработавших газов на выходе из турбины всегда постоянно (p4 =const) и близко к атмосферному, тогда как в поршневом двигателе при открытии выхлопного клапана давление в цилиндре снижается до атмосферного прак­тически мгновенно, за время, в течение которого поршень смещается весьма мало (υ=const).

Зависимость ηт от ρ для разных значений β (при κ=1,40), описывается уравнением (4).

Из уравнения (4) можно найти максимальное значение ηт для каждой степени предварительного расширения ρ. Возьмем для этого пер­вую производную от ηт по степени увеличения давления β при ρ=const. После соответствующих преобразований получим:

(5)

Приравнивая теперь это выражение нулю, получаем следующее ус­ловие максимального термического КПД:

(6)

Следует отметить, что при цикл приобретает своеобраз­ный вид «треугольника».

Заменяя в соотношении (4) β по уравнению (6), получаем уравнение для максимального ηт при данном ρ:

(7)

Считаем, что цикл обратимый. Одной из основных характеристик цикла ГТУ является степень сжатия воздуха в компрессореравная отношению

давления воздуха после компрессорак давлению перед нимт.е.

(8)

Из формулы (8) найдем давление 2:

, Па

,Па

Из формулы Менделеева-Клапейрона:

(9)

Найдем удельный объемдля одного килограмма воздуха:

, м3/кг

Где R- удельная газовая постоянная, равная , представляет собой

работу газа массой 1 кг при изменении его температуры на один градус в процессе при постоянном давлении , Дж/кг ∙ K

, м3/кг.

Из соотношений между и для адиабаты: (10)

Из уравнения (10) найдем :

3/кг.

Из формулы (9) найдем :

K.

Процесс 2-3 изобарный, следовательно:

Па.

- максимальная температура, принимаем по заданию: K.

Из уравнения (9) находим

м3/кг.

Из соотношения между параметрамиидля адиабатного процесса выразим

K.

Где - показатель адиабаты, для двухатомных газов .

Из уравнения 2 найдем ….