Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПЕРЕНАПРЯЖЕНИЯ 2.doc
Скачиваний:
19
Добавлен:
05.12.2018
Размер:
875.52 Кб
Скачать

2.23. Схема замещения а) и кривые переходного процесса при отключении ненагруженного трансформатора

Вследствие этого и напряжение на контактах оказывается меньше, однако оно еще превышает Uпр и снова происходит пробой межконтактного промежутка. Так процесс повторяется до тех пор пока постепенно уменьшающееся напряжение на контактах выключателя не сделается меньше восстанавливающейся прочности межконтактного промежутка, момент t1. В ряде случаев повторные зажигания дуги в выключателях происходят в течение двух и более полупериодов промышленной частоты. Чем дольше продолжается процесс повторных зажиганий, тем больше перенапряжения на отключаемой индуктивности.

Контакты выключателя выполняют роль разрядника, ограничивающего максимальную кратность перенапряжений, которая оказывается меньше расчетной.

Перенапряжения с кратностью 2,5-3,5 не представляют опасности для изоляции трансформаторов 35 кВ, но их частое повторение нежелательно для внутренней изоляции из-за кумулятивного эффекта. Для трансформаторов меньших классов напряжения кратность перенапряжений может быть существенно выше (4-6 для трансформаторов 6-10 кВ) вследствие меньшей величины Сэ и большим током холостого хода.

Трансформаторы с Uном110 кВ в большинстве случаев имеют магнитопроводы из холоднокатанной стали и при их отключении не возникает больших перенапряжений. Однако в настоящее время эксплуатируется еще большое количество трансформаторов, изготовленных до 70-х годов из горячекатанной стали, в которых возможны большие перенапряжения.

Необходимо также учитывать, что в некоторых случаях отключение трансформаторов происходит из неустановившегося режима, связанного с его предшествующем включением. Это может произойти из-за ошибочного включения трансформатора на к.з., неуспешного АПВ или из-за того, что технологических процесс требует частых коммутаций.

Существенные перенапряжения могут возникнуть при отключении шунтирующих реакторов. Их магнитопроводы имеют воздушный зазор, поэтому кривая намагничивания реактора мало отличается от прямой линии и отсутствует влияние насыщения. Кроме того, при коммутациях реакторов срез тока происходит не на максимуме, а при несколько меньших значениях: 45-60 А для Uном=500 кВ и 60-70 А в сетях 750 кВ.Потерями в этом случае можно пренебречь. Максимальные перенапряжения при отключении реакторов могут быть определены по формуле

где Uном – номинальное напряжение реактора; Sp – трехфазная мощность реактора.

Таким образом, при отключении трансформаторов и реакторов возникает переходной процесс с достаточно большой кратностью перенапряжений. Колебания имеют высокую частоту, но малую энергию, запасенную в индуктивности. Такие перенапряжения могут быть ограничены с помощью ОПН, установленными как можно ближе к трансформатору и реактору. Ограничивающее действие разрядников и ОПН при отключении индуктивных токов проявляется, как правило, на подстанциях высших классов напряжения, где они преимущественно устанавливаются вблизи трансформаторов. В сетях 6-35 кВ разрядники или ОПН в основном подключаются к сборным шинам подстанции и не участвуют в ограничении таких перенапряжений.

В ряде случаев перенапряжения могут быть ограничены шунтирующими сопротивлениями в выключателях со значением близким к Zт или Zp ( десятки кОм), включенным параллельно главным контактам выключателя.. Эти сопротивления демпфируют перенапряжения в коммутируемой цепи, облегчают условия гашения дуги и увеличивают дугогасящую способность выключателя

Перенапряжения снижаются с ростом Сэ, поэтому иногда оказывается целесообразным подключить параллельно обмотке трансформатора конденсаторы, например конденсаторы связи, кабели.

В табл.2.2 представлены значения кратностей перенапряжений, измеренных в ЛГТУ в сетях разных классов напряжения.

Таблица 2.2 Максимальная кратность перенапряжений при отключении ненагруженных трнасформаторов

Uном , кВ

6-10

110

150

220

330

500

Кмакс

4,3-6,2

4,1-4,5

2,9-3,5

1,9-2,1

1,9-2,1

1,8-2,1

Максимальная кратность перенапряжений, измеренная на шунтирующих реакторах 500 кВ составила 2,2-2,35.

49