Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы Физиология ЦНС.doc
Скачиваний:
12
Добавлен:
01.12.2018
Размер:
3.49 Mб
Скачать

Билет 2

Белки, их строение, принцип «ключ-замок». Функции белков в нервных клетках (примеры ферментов, каналов, насосов, рецепторов). Защитные и двигательные белки.

Белки: состоят из мономеров – аминокислот (а/к).Каждая а/к имеет:аминогруппу (-NH2),

кислотную группу (-COOH), радикал (R). Всего в состав белков входят 20 типов а/к; они различаются только химической структурой R.

Итоговая цепь а/к – первичная структура белка. Радикалы не принимают участия в ее формировании. Средняя длина белковой молекулы – 300-700 а/к. У каждого белка – своя, уникальная первичная структура.Полимеризация а/к с образованием белка происходит за счет связывания СООН-группы предыдущей а/к с NH2-группой следующей а/к.

Следующий этап: образование вторичной структуры белка. Она формируется за счет присутствия на аминогруппах довольно большого положительного заряда, на кислотных группах – отрицательного заряда. Взаимное притяжение таких (+) и (–) ведет к укладке белковой цепи в спираль (на каждом витке примерно 3 а/к; радикалы в этом вновь не участвуют).

Третичная структура белка – белковый клубок, формируется за счет взаимодействия радикалов (и, следовательно, зависит от первичной структуры).

Взаимодействие радикалов может происходить благодаря: образованию ковалентной химической связи притяжению неравномерно заряженных областей контакту углеводородных участков (как в случае «хвостов» липидных молекул) и др.Третичная структура (белковый клубок), как правило, имеет ямку («активный центр»). Здесь происходит захват молекулы-мишени («лиганда») по принципу «ключ-замок». После этого белок способен выполнить с лигандом те или иные операции. Тип операции с лигандом = тип белка. Белки-ферменты, транспортные белки (белки крови, каналы, насосы, белки-рецепторы, двигательные белки, защитные (антитела), строительные и др.

Белок-фермент, управляющий распадом вещества-лиганда (пример: пищеварит. ферменты). Транспортный белок (например, перенос кислорода гемоглобином). Белок-фермент, управляющий синтезом нового вещества из двух лигандов

Постоянно открытый белок-канал: похож на цилиндр с отверстием; встроен в мембрану клетки; через него может идти диффузия (как правило, строго определенных мелких частиц – молекул Н2О, ионов К+, Na+ и др.). Диффузия – движение частиц среды из области с высокой концентрацией в область с низкой концентрацией; чем больше разность концентраций, тем интенсивнее диффузия.

Белок-канал со створкой: также встроен в мембрану клетки; его отверстие перекрыто петлей-створкой, («канал закрыт»). Створка при определенных условиях может открываться, «разрешая» диффузию (условия открытия: появление определенных химических веществ, электрические воздействия и др.)

Белок-насос:

1. «Чаша» белка встроена в мембрану клетки и открыта, например, в сторону внешней среды; происходит присоединение лиганда.

2. Изменение пространственной конфигурации белка-насоса (как правило, требует затрат энергии АТФ; перенос лиганда не зависит от разности концентраций).

3. Белок-насос открывается в сторону цитоплазмы, высвобождая лиганд; затем – возвращение белка-насоса в исходную конфигурацию.

Пример: действие гормонов и медиаторов.Так, инсулин, выделяемый поджелудочной железой, активирует работу насосов, транспортирующих внутрь клетки глюкозу.

Белки-рецепторы: встроены в мембрану клетки и выполняют информационную функцию. Лиганд в этом случае – сигнал об определенном событии во внешней (межклеточной) среде. После присоединения лиганда рецептор запускает реакцию клетки, влияя на ферменты, насосы, ионные каналы и т.п.

Другие типы белков: защитные белки (белки-антитела; захватывают лиганды-антигены – вредные чужеродные вещества), двигательные белки (актин и миозин; за счет их взаимодействия происходит сокращение мышечных клеток), строительные белки (коллаген – белок межклеточного вещества соединительной ткани; кератин – волосы и ногти), запасающие белки (казеины молока, глютены пшеницы и др.)

Роль ацетилхолина в деятельности симпатической и парасимпатической систем; вегетативные эффекты соединений, изменяющих работу Ацх-синапсов.

По химическому строению ацетилхолин представляет собой соединение двух молекул — азотсодержащего холина и остатка уксусной кислоты: Холин является незаменимым витаминоподобным соединением, получаемым с пищей в достаточном количестве, и последствия его дефицита наблюдаются только в искусственных условиях. Синтез ацетилхолина осуществляется в основном в пресинаптических окончаниях с помощью фермента холина-цетилтрансферазы. Затем медиатор переносится в пустые везикулы и хранится в них до момента выброса. Ацетилхолин в качестве медиатора работает в трех функциональных блоках нервной системы: в нервно-мышечных синапсах, периферической части вегетативной нервной системы и некоторых областях ЦНС. Ацетилхолин является медиатором мотонейронов нервной системы, которые расположены в передних рогах серого вещества спинного мозга и двигательных ядрах черепных нервов. Их аксоны направляются к скелетным мышцам и, разветвляясь, образуют нервно-мышечные синапсы. При этом один аксон может устанавливать контакт с сотнями мышечных волокон, но каждое мышечное волокно управляется только одним синапсом. Размер нервно-мышечных синапсов в десятки раз больше, чем синапсов в ЦНС, и пришедший по аксону мотонейрона даже одиночный ПД вызывает выделение значительного количества ацетилхолина (этап /). В результате развивающаяся на постсинаптическои мембране деполяризация оказывается настолько велика, что всегда запускает ПД мышечной клетки (//), который приводит к выбросу Са2+ из каналов ЭПС

(III), активации двигательных белков и сокращению (IV). Периферическое звено вегетативной нервной системы состоит из двух нейронов: тело первого (преганглионарного) находится в ЦНС, а аксон направляется к вегетативному ганглию; тело второго (постганглионарного) находится в ганглии, а аксон иннервирует гладкие мышечные или железистые клетки внутренних органов. Ацетилхолин в качестве меди-

медиатора вырабатывается во всех преганглионарных клетках, а также в постганглионарных клетках парасимпатической части вегетативной нервной системы. Некоторые постганглионарные симпатические волокна (активирующие потовые железы и вызывающие расширение сосудов) также секретируют ацетилхолин. В ЦНС ацетилхолин вырабатывается частью нейронов ретикулярных ядер моста и интернейронами полосатого тела базальных ганглиев и некоторых других локальных зон. Рассматривается роль этого медиатора в регуляции уровня бодрствования, а также в системах памяти, двигательных системах. Доказана эффективность применения антагонистов ацетилхолина при ряде двигательных нарушений. Выделяясь из пресинаптического окончания, ацетилхолин действует на постсинаптические рецепторы. Эти рецепторы неоднородны и различаются локализацией и рядом свойств. Выделено два типа рецепторов (рис. 3.26): первый, помимо ацетилхолина, возбуждается под действием алкалоида табака никотина (никотиновые рецепторы), второй тип активируется ацетилхолином и токсином мухомора мускарином (мускариновые рецепторы). Никотиновые рецепторы являются классическим примером ионотропных рецепторов: их ионный канал входит в состав рецептора и открывается сразу после присоединения ацетилхолина. Канал этот характеризуется универсальной проницаемостью для положительно заряженных ионов, но в обычных условиях (при открытии на фоне ПП) в связи с никотиновыми рецепторами наблюдается в основном входящий Na+-TOK, вызывающий деполяризацию мембраны и возбуждение нейрона.

Никотиновые рецептры расположены на постсинаптической мембране поперечно-полосатых волокон скелетных мышц (нервно-мышечные синапсы); в синапсах вегетативных ганглиев и в меньшем количестве, чем мускариновые рецепторы, в ЦНС. Областью, наиболее чувствительной к никотину, являются вегетативные ганглии, поэтому первые попытки курения приводят к значительным нарушениям в деятельности органов: скачкам артериального давления, тошноте, головокружению. По мере привыкания сохраняется в основном симпатический компонент действия: никотин начинает работать преимущественно как стимулятор многих систем организма. Присутствует также и центральное активирующее влияние (на головной мозг) ацетилхолина. Сверхдозы никоти-

никотина E0 и более мг) вызывают резкое учащение сердцебиения, судороги и остановку дыхания. Во время курения никотин действует как слабый наркотический препарат-стимулятор, вызывая развитие не только привыкания, но и зависимости. Наркотическая зависимость — это ситуация, когда организм включает поступающий извне препарат в свой метаболизм, т. е. начинает «рассчитывать» на его постоянный приток. При отказе от препарата происходит сбой в использующих его системах мозга: наблюдается резкое ухудшение самочувствия, депрессия{абстинентный синдром или синдром отмены)- Человеку, попавшему в зависимость, наркотик необходим уже не столько для того, чтобы почувствовать бодрость и эйфорию, сколько для возврата хотя бы к относительно нормальному уровню жизнедеятельности. Наиболее известным антагонистом никотиновых рецепторов является тубокурарин — активное действующее начало яда некоторых южноамериканских растений. Основным «местом приложения» его влияния являются нервно-мышечные синапсы (вариант /). При этом происходит последовательное расслабление и паралич мышц пальцев, затем глаз, рук и ног, шеи, спины и, наконец, дыхательных. Мускариновые рецепторы являются метаботропными; они связаны с G-белками, и присоединение к ним ацетилхолина приводит к синтезу вторичных посредников. Выделяют две основные локализации мускариновых рецепторов: синапсы, образуемые постганглионарными (в основном парасимпатическими) вегетативными волокнами и ЦНС. В первом случае в качестве вторичных посредников используются инозитолтрифосфат и диацилглицерол; во втором — цГМФ. Ионные последствия возбуждения мускариновых рецепторов весьма разнообразны: в сердце наблюдается увеличение проводимости для ионов К+, что приводит к гиперполяризации и снижению частоты сокращений; в гладких мышцах отмечаются изменения проводимости как для К+, так и для Na+ (возможна гипер- или деполяризация в зависимости от конкретного органа). В ЦНС отмечается снижение проницаемости мембраны для К+ (деполяризация; возбуждающее действие), но синапсы, содержащие мускариновые рецепторы, могут располагаться как на тормозных, так и на возбуждающих нейронах коры и базальных ганглиев. В связи с этим последствия блокады либо активации мускариновых рецепторов на поведенческом уровне оказываются очень индивидуальны; их выраженность и направленность зависит от конкретной химической структуры того или иного препарата. Эффекты мускарина носят преимущественно парасимпатический характер: при отравлении мухоморами наблюдается тошнота, повышенное пото- и слюноотделение, слезотечение, боли в животе, снижение артериального давления и сердечной активности.

Классическим антагонистом мускариновых рецепторов является атропин — токсин белены и дурмана. Его периферические эффекты прямо противоположны действию мускарина: происходит снижение тонуса мышц желудочно-кишечного тракта, учащается сердцебиение, прекращается слюноотделение (сухость во рту), расширяются зрачки, наблюдаются и центральные эффекты (двигательное и речевое возбуждение, галлюцинации). Инактивация ацетилхолина происходит непосредственно в синаптической щели. Ее осуществляет фермент ацетилхоли-нэстераза, разлагающий медиатор до холина и остатка уксусной кислоты, затем холин всасывается в пресинаптическое окончание и может вновь использоваться для синтеза ацетилхолина. Ацетилхолинэстераза имеет активный центр, узнающий холин, и один активный центр, «отрывающий» ацетильную

группу от исходной молекулы. Последний часто является местом атаки специфических блокаторов (вариант //). Примером подобного блокатора служит прозерин (неостигмин), применяемый при миастении, которая встречается примерно у трех человек на тысячу (чаще у женщин). Симптомами заболевания служат быстрая мышечная утомляемость, непроизвольное опускание век, замедленное жевание. Такие больные очень чувствительны к тубокурарину, а введение блокаторов ацетилхолинэстеразы ослабляет патологические проявления. В настоящее время известно, что у значительной части больных миастенией число никотиновых рецепторов примерно на 70% меньше, чем в норме. Причина этого состоит в том, что иммунная система больного вырабатывает антитела на никотиновые рецепторы. Эти антитела ускоряют разрушение рецепторов на мембране, ослабляя передачу в нервно-мышечном синапсе. Прозерин и сходные с ним препараты называют обратимыми блокаторами ацетилхолинэстеразы, их действие прекращается через несколько часов после введения, кроме того, существуют необратимые блокаторы того же фермента. В этом случае вещество, нарушающее работу ацетилхолинэстеразы, вступает с белком в устойчивую химическую связь и выводит его из строя. Таким образом действуют фосфорорганические соединения, применяемые как препараты против насекомых (инсектициды): хлорофос, тиофос и сходные с ними соединения могут вызвать у человека сужение зрачков, потливость, снижение артериального давления, подергивания мышц. Еще более сильными агентами-блокаторами являются различные нервно-паралитические газы (зарин): легко проникая через все барьеры организма, они вызывают судороги, потерю сознания и паралич. Смерть наступает от остановки дыхания. Для немедленного ослабления эффектов отравляющих газов рекомендуется использование атропина; для восстановления деятельности ацетилхолинэстеразы — особые вещества-реактиваторы, «отрывающие» блокатор от фермента. Другим примером разрушительного действия на ацетилхо-линергический (использующий ацетилхолин в качестве медиатора) синапс являются нейротоксины змей. Например, яд кобры содержит альфа-нейротоксин, необратимо связывающийся с никотиновым рецептором и блокирующий его, а также бета-нейротоксин, который тормозит выделение медиатора из пресинаптического окончания.

\

Сосудодвигательный центр продолговатого мозга и моста, принципы его функционирования; барорецепторный рефлекс. Дыхательная аритмия.

Продолговатый мозг и мост: выполняют ряд «жизненно важных» функций; здесь находятся: дыхательный центр (запуск вдохов и выдохов); сосудодвигательный центр (работа сердца, тонус сосудов); центры, обеспечивающие врожденное пищевое поведение (центр вкуса, сосания, глотания, слюноотделения, рвоты и др.); главный центр бодрствования («блок питания» ЦНС).

Схема расположения дыхательных нейронов продолг. мозга и моста:

Е – экспираторные (выдох),

I – инспираторные (вдох).

Среди нейронов вдоха ключевую роль играют клетки-пейсмекеры, находящиеся в ядрах нижней части ромбовидной ямки.

Врожденно обусловленная частота их активации у человека: примерно 1 волна в 5 сек (12 раз в мин = частота дыхания во сне).

От клеток-пейсмекеров (генераторов ритма) ПД передаются к другим дыхат. нейронам и мотонейронам шейных и грудных сегментов спинного мозга, запускающим сокращение диафрагмы и межреберных мышц.

Вдох приводит к постепенному растяжению легких и стенок грудной клетки.

Растяжение активирует особые механорецепторы (отростки чувствительных нервных клеток, входящие в состав Х нерва), передающие сигнал в продолговатый мозг и мост.

Этот сигнал тормозит инспираторные и включает экспираторные нейроны (вдох сменяется выдохом).

После выдоха возникает пауза (до нового включения пейсмекеров).

На частоту работы пейсмекеров (долю посто-янно открытых Na+-каналов) влияют сигналы от хеморецепторов и ствола мозга. Хеморецепторы: концентрация О2 и СО2 в крови; влияния ствола: эмоции (голубое пятно), температура (гипоталамус), центры бодрствования, боль, стресс и др.

Возможен, кроме того, произвольный контроль дыхания.

Еще о дыхательных центрах:

  • инспираторные нейроны – это не только пейсмекеры, но и клетки, «зацикливающие» ПД по замкнутому контуру, что дает возможность оказывать на мотонейроны стабильное активирующее действие;

  • хеморецепторы СО2 (и Н+) представляют собой нейроны на дне ромбовидной ямки; активируются в основном при физической нагрузке;

  • хеморецепторы О2 расположены в каротидном синусе (область разветвления на наружную и внутреннюю сонные артерии); важны, например, при подъеме в горы (на высоте 5 км воздуха в 2 раза меньше);

  • пробуждение приводит к активации пейсмекеров центрами бодрствова-ния, и частота дыхания растет до 16-18 в мин; при эмоциях и физич. нагрузке – до 30-40 в мин.

Передача информации о содержании О2 в крови идет по волокнам IX нерва (кроме того, на схеме показана область, где расположены рецепторы растяжения аорты; сигнал идет по волокнам Х нерва).

Продолговатый мозг и мост: центры кашля, чихания, задержки дыхания при погружении в воду (оборонительные реакции).

Барорецепторы (растяжение стенок сосудов)

Барорецепторный рефлекс – компенсаторная реакция на изменение растяжения стенок дуги аорты и каротидного синуса

Если давление оказывается ниже нормы (у собаки около 160 мм рт.ст.), то активируется симпатическая система, сердце начинает биться чаще и сильнее; если давление выше нормы – активируется блуждающий нерв, работа сердца тормозится.

Дыхательная аритмия: результат влияния дыхательного центра на сосудодвигательный на примере частоты сердечных сокращений (ЧСС) собаки.

Во время вдоха интервал между сокращениями сердца уменьшается (ЧСС растет); во время выдоха – наоборот.

Дыхательной аритмии

подвержена активность как симпатических, так и парасимпатических нервов, однако только действие Ацх развивается и прекращается достаточно быстро (благодаря Ацх-эстеразе); эффекты NE «не успевают» за дыхательным ритмом.

Т.о., выраженность дыхат. аритмии – показатель активности парасимпатической системы.

Сверхаритмия у новорож-денных – признак незрелости сосудодвиг. центра; нужны ноотропы, а не сердечные препараты!

Основные связи сосудодвигательного центра продолговатого мозга и моста (на выходе показаны только симпат. эффекты):

1. Барорецепторы сосудов.

2. Периферические хемо-

рецепторы (хемоРЦ).

3. Центральные хемоРЦ.

4. Дыхательные центры.

5. Влияния гипоталамуса (терморегуляция, боль и другие врожденно значимые стимулы, эмоции) и коры больших полушарий (пере-ключаются через гипотала-мус и средний мозг; эмоции, связанные с оценкой ситуа-ции как потенциально значи-мой, опасной и т.п.; центр таких эмоций – поясная изв.).