Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
CAE_konspekt.doc
Скачиваний:
32
Добавлен:
25.11.2018
Размер:
782.34 Кб
Скачать

8. Типы материалов, используемых в универсальных пакетах

Рассмотрим подробнее типы материалов, которые используются при конечно-элементных расчетах. Предварительно напомним некоторые определения из теории упругости. Материал называется изотропным (isotropic), если его свойс­тва одинаковы во всех направлениях. Если свойства материала зави­сят от выбранного направления – то это анизотропный (anisotropic) материал. Анизотропный материал называется ортотроп­ным (orthotropic), если имеются 3 взаимно ортогональных плоскости симметрии, относительно которых его характеристики постоянны, но не равны между собой. Ярким примером ортотроп­ного материала могут служить дерево или композиты.

Строго говоря, большинство материалов, используемых в машиностроении, являются анизотропными. Например, механические свойства прокатанного листа зависят от его ориентации при прокатке (вдоль листа – поперек листа). При обычных расчетах проще считать тот же стальной лист изотропным, но для ответственных деталей, выполняемых с минимальными запасами по прочности, необходимо учитывать анизотропию материала, обусловленную технологической наследственностью.

С механической точки зрения материалы, используемые при МКЭ-расчетах, можно классифицировать также по виду зависимости между напряжением  и деформацией  при приложении нагрузки и, что важно, при ее снятии. Различают упругие и пластические материалы.

Упругий материал после снятия нагрузки возвращается в исходное состо­яние по той же самой траектории, как и при нагружении (рисунок 4.2.3, а, б). Остаточная деформация для него равна нулю.

Если между напряжением и деформацией для материала существует линейная зависимость (выполняется закон Гука), то такой материал называют линейно-упругим (рисунок 4.2.3, а). При этом деформация линейно зависит от напряжения как при приложении, так и при снятии нагрузки. Примером такого материала может служить сталь, когда напряжения в материале не превышают предела пропорциональности.

Нелинейно-упругий (non-linear elastic) материал имеет не­линейные, но однозначные зависимости между напряжением и деформацией, одинаковые при нагрузке и разгрузке (рисунок 4.2.3, б). После разгрузки тело восстанавливает свою форму и размеры без остаточных (пластических) деформаций. Примером такого материала может служить чугун. Разновидностью нелинейно-упругого материала является высокоэластичный (hyperelastic) материал. Он способен упруго выдерживать большие деформации, при которых относительная деформация достигает 500%. Примером такого материала может служить резина, нейлон.

Зависимость деформации от напряжений для упруго-пластичного (elasto-plastic, bi-linear) материала имеет начальный упругий участок, за которым следует зона упрочнения (рисунок 4.2.3, в). Считается, что разгрузка происхо­дит по прямой, параллельной упругому участку. В результате после снятия нагрузки в теле остаются пластические деформации. Диаграмму деформирования обычно аппроксимируют двумя линейными зависимостями с разными модулями упругости на упругом участке и в зоне упрочнения (штриховая линия на рисунке 4.2.3, которая аппроксимирует нелинейную зависимость в зоне упрочнения).

Разновидностью упруго-пластичного материала является пластичный (plastic) материал, диаграмма напряжений которого в общем случае не имеет упругого участка (рисунок 4.2.3, г). При задании упругих свойств таких материалов их диаграмма напряжений стандартно аппроксимируется не двумя, а несколькими линейными участками.

а)

б)

в)

г)

Рисунок 4.2.3 – Зависимости между напряжением  и деформацией  для различных материалов

При необходимости можно задать свойства материала по произ­вольной аналитической зависимости напряжение–деформация, или, например, теплопроводность–температура (только как функцию од­ного параметра). При желании можно создать новый материал со своими уникальными механическими и/или тепловыми свойствами. При использовании универсального конечно-элементного пакета в одной модели можно использовать практически любое количество различных материалов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]