Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
CAE_konspekt.doc
Скачиваний:
32
Добавлен:
25.11.2018
Размер:
782.34 Кб
Скачать

16. Представление результатов расчета

Результаты расчета можно просмотреть самыми разными путями. Например, самая полная информация о перемещениях, напряжениях и т.д. в каждом узле исследуемого тела записана в текстовом файле результатов. Это не всегда удобно, поскольку такой файл имеет большой размер. Поэтому обычно вначале визуально оценивают распределение расчетных параметров в теле, а затем уточняют значения параметров в элементах с экстремальными значениями.

Раскраска пластины отражает распределение расчетных параметров, в данном случае эквивалентных напряжений по фон Мизесу. Для грубой оценки значений расчетного параметра с правой стороны экрана размещается шкала (т.н. легенда), состоящая из цветных квадратиков. Возле каждого цветного квадратика шкалы стоит соответствующее ему среднее численное значение параметра. Как правило, холодным цветам (фиолетовый, синий, …) соответствует минимальное, а теплым (оранжевый, красный, …) – максимальное значение расчетного параметра.

В некоторых случаях бывает удобно представить результаты распределения расчетных параметров в виде графика зависимости параметра от, например, какой-нибудь координаты. При такой форме представления результатов легко уточнить места расположения экстремальных значений исследуемого параметра.

Следует отметить, что 16-тицветная раскраска в принципе не может позволить оценить точное значение параметра. Цветное изображение предназначено только для качественной оценки распределения исследуемого параметра (например, напряжений). При необходимости уточнить значение параметров, например, напряженно-деформированного состояния, в конкретном конечном элементе достаточно указать на него и получить полный список всех относящихся к нему расчетных параметров.

Следует хотя бы кратко упомянуть об оценке результатов, получаемых при прочностных расчетах. Для оценки напряжений по умолчанию обычно предлагается значения эквивалентных напряжения ЭКВ, вычисленные по энергетической гипотезе фон Мизеса (VonMises Stress):

где X, Y, Z – нормальные, а XY, YZ, XZ – касательные напряжения. Такой критерий, вытекающий из четвертой теории прочности, наиболее подходит для пластичных материалов, одинаково сопротивляющихся растяжению и сжатию. С другой стороны, для хрупких материалов, для материалов, имеющих разное сопротивление на растяжение и сжатие, для ламинированных материалов, композитов и т.д. может оказаться целесообразным оценивать предельно допустимые напряжения по другим критериям. Например, это могут быть значения наибольших главных напряжений (MajorPrn Stress), допустимые деформации (Translation), максимальные сдвиговые напряжения в верхних волокнах пластины (MaxShear Stress) и т.д. Выбор нужного критерия является важнейшим этапом в оценке результатов расчета и, к сожалению, определяется только знанием и опытом проектировщика.

17. Встроенные в cad-пакеты расчетные модули

Встроенные модули предназначены, в первую очередь, для экспресс-оценки характеристик изделия на ранних стадиях проектирования. На этой стадии необходима возможность сравнивать различные варианты конструкции детали, определить возможные места концентраторов напряжений и т.д. Поэтому главные требования к встроенным в CAD расчетным модулям – простота подготовки исходных данных и скорость работы. Как правило, это достигается за счет снижения точности расчета и возможностей моделирования.

Встроенные модули CAE рассчитаны на малоподготовленных пользователей. Поэтому для них характерна предельная автоматизация проведения расчетов. Например, материал модели может определяться автоматически (если, конечно, он задан в CAD-модуле). Для моделирования геометрии используются, как правило, только твердотельные или пластинчатые конечные элементы, причем выбор разных типов элементов в рамках одной модели часто просто невозможен.

Сетка конечных элементов строится тоже автоматически и часто даже не показывается на модели. Возможности ее коррекции минимальны или вообще отсутствуют. Но при этом предусмотрено автоматическое сгущение сетки в местах геометрических особенностей (например, вокруг отверстий, во внутренних углах и т.д.) и в зонах приложения нагрузок и закреплений.

Задание нагрузок обычно интуитивно понятно, но разновидностей нагрузок существенно меньше по сравнению с универсальными пакетами. Условия закрепления обычно задаются в стиле, принятым в сопромате. Кроме того, поскольку расчетный модуль тесно интегрирован с CAD, в некоторых модулях можно использовать условия сопряжения деталей в сборке для задания граничных условий (закреплений).

Состав различных видов анализа ограничен по сравнению с составом универсальных программ и в основном предназначен для решения таких задач, как линейный статический механический и тепловой анализ, определение собственных форм колебаний (модальный анализ), оценка устойчивости конструкции и т.д. Такой подход вполне допустим на ранних стадиях проектирования, поскольку точные значения нагрузок еще не известны, поэтому высокая точность моделирования просто не требуется. Достаточна только предварительная оценка распределения напряжений или температур

Для дальнейшего расширения возможностей моделирования в среде CAD-пакета достаточно широко используются т.н. «приставочные» (интерфейсные) модули. Фактически такой модуль представляет собой пре- и постпроцессор, более или менее органически встроенный в CAD-пакет. С его помощью инженер генерирует сетку конечных элементов на существующей геометрии, задает материалы и граничные условия, прикладывает соот­ветствующие нагрузки и передает исходные для расчета данные решателю универсального пакета (ANSYS, NASTRAN). Ре­зультаты расчета (распределение напряжений, перемещений, темпе­ратур и т.д.) демонстрируются прямо в среде CAD-пакета.

Для пользователя работа с такими интерфейсными модулями почти неотличима от работы со встроенными расчетными модулями. Например, сетка конечных элементов, нагрузки и граничные условия точно так же будут авто­матически адаптироваться к изменениям геометрии.

Но в отличие от встроенных модулей, интерфейсный модуль обеспечивает доступ ко всем (или, по крайней мере, к большинству) возможностям универсального пакета. Например, Ansys Workbench Environment может подготавливать данные для расчета почти во всех модулях ANSYS, включая нели­нейные материалы, моделирование разрушений, гидро­динамику и мультифизику (multiphysics) – комбинацию механических, тепловых и гидродинамических задач в едином процессе моделирования. Единственным недостатком подобного решения является необходимость покупать решатели универсального CAE-пакета, чья стоимость сегодня многократно превышает стоимость любой CAD системы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]