Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
CAE_konspekt.doc
Скачиваний:
32
Добавлен:
25.11.2018
Размер:
782.34 Кб
Скачать

18. Моделирование литья

Моделирование литья включает в себя следующие типовые этапы. В первую очередь, должна быть подготовлена твердотельную модель отливки в любой CAD-системе. К отливке добавляется модель литниковой системы, а в ряде случаев, и модель формы для литья. Полученная из CAD–пакета геометрия разбивается на сетку конечных элементов (или, в некоторых пакетах, конечно-разностную сетку).

Перед началом расчета из базы данных пакета выбирается марка литьевого материала, его температура, давление впрыска; материал и температура формы, вид заливки. Исходя из выбранных материалов, автоматически задаются их теплофизические характеристики (теплопроводность, теплоемкость, скрытая теплота кристаллизации и их зависимости от температуры). Аналогично, из базы данных автоматически задаются граничные условия «отливка – форма» (коэффициенты теплопередачи, излучения и т.д.).

Далее выполняется важнейший и наиболее длительный этап – гидродинамический расчет заполнения формы расплавом. В ходе его выполнения моделируется движение фронта расплава. В ряде пакетов учитывается еще и движение вытесняемого воздуха и газов, выделившихся в процессе литья (например, при сгорании выплавляемой модели при литье металлов).

Одновременно выполняется термический расчет с целью определения тепловых потоков и температур в системе «отливка – форма – окружающая среда». При этом учитывается сложный характер теплообмена на границе «отливка–форма» с учетом прослоек (окислы, покрытия) и зазоров, а также выделение тепла при затвердевании и перехода материала в разные фазы. Параллельно определяется распределение температур и в самой форме.

Результатом совместного гидродинамического и теплового расчета является поля скоростей потока, давления и температур в любой момент заполнения формы. В результате возможно также определить места вероятного размещения холодных спаев и других дефекты заполнения, возможные места образования воздушных карманов или скопления частиц загрязнений и т.д. Анализ процесса заполнения формы сам по себе дает ценную информацию для оценки возможности образования и места расположения многих дефектов. Например, преждевременное затвердевание расплава в сужении, соединяющего различные области отливки, может привести либо к недоливу (рисунок 4.6.2.1), либо к повышенной пористости отливки.

Анализ изменений теплового поля при остывании позволяют определять микроструктуру и механические свойства отливки. Такой анализ позволяет прогнозировать с высокой точностью конечную форму отливки с учетом деформаций и остаточных напряжений, оценить степень коробление и даже усталостную прочность отливки. Кроме того, легко определить оптимальную температуру выемки отливки из формы, ниже которой не будет происходить деформация отливки.

Пакеты для моделирования литья металлов – MAGMA Soft (ФРГ), ProCast (США), Полигон (РФ). Для моделирования литья пластмасс – MoldFlow.

а)

б)

Рисунок 4.6.2.1 – Пример образования дефектов литья

19. Пакеты для динамического анализа механизмов

При динамическом анализе механизмов определяются силы, ускорения, скорости, расстояния и углы, возникающие в механической системе в процессе движения. Это могут быть как простейшие механические системы, например, маятник или брошенный камень, так и сложные механизмы, состоящие из множества деталей, например, автомобиль, самолет, станок или робот. Примеры некоторых динамических моделей представлены на рисунке 1.

В первом приближении можно сказать, что изделие представляется как система абсолютно жестких деталей, связанных упругими связями и могущими перемещаться друг относительно друга. Упругие связи моделируют чаще всего зоны контакта (зоны повышенной податливости) между деталями. Математической основой таких пакетов являются системы нелинейных алгебро-дифференциальных уравнений, описывающих динамику отдельных частей исследуемого механизма.

Важнейшей особенностью пакетов для динамического анализа механизмов является то, что они не имеют ограничений на локальность перемещений, принятых в МКЭ. Это позволяет рассчитывать движение различных механических систем, составные части которых совершают большие перемещения в пространстве относительно друг друга. Если в процессе движения механической системы происходят изменения в ее структуре, например, разрушаются или заклиниваются какие-то шарниры, то соответствующие уравнения будут автоматически переформированы.

Движение многозвенного поезда по «американским горкам»

Обработка на станке с параллельной кинематикой (гексаподе)

Рисунок 1 – Примеры моделируемых механизмов

При работе в таких пакетах пользователь просто рисует на экране компьютера механическую систему, описывая ее звенья (body), соединяющие их шарниры (joint) и упругие элементы в шарнирах (пружины, spring). Звенья – это твердые тела, из которых состоит механическая система. Шарнир описывает подвижное соединение нескольких звеньев. Под шарнирами понимают как собственно шарнир (по типу дверной петли), так и любую поверхность, вдоль которой может скользить тело (направляющую скольжения, трехмерный кулачок, контакт шины автомобиля с дорогой и т.д.). Пружины описывают податливость и демпфирующие свойства шарниров.

Далее необходимо задать коэффициенты упругости и демпфирования пружин, коэффициенты (статический и динимаческий) силы трения в шарнирах, параметры воздействия на звенья механизма внешней среды, например, аэродинамического сопротивления или гравитации и т.д. Далее следует расставитьт «датчики» (sensor), программно записывающие значения выбранных параметров (сил в контактах, угловых и линейных ускорений и скоростей движени отдельных звеньев и т.д.) и описывает закон движения входного звена – «двигателя» (actuator). На основании этих данных пакет автоматически рассчитываются массово-инерционные характеристики частей системы и сформирует точные уравнения движения ее составных частей.

Усилия, действующие в механизме, могут затем быть переданы в МКЭ-пакет и использованы в качестве исходных данных для определения напряжений в деталях. В настоящее время стандартом де-факто программ для динамического анализа механизмов является пакет ADAMS от MSC.Software, занимающий более 2/3 мирового рынка. Определенное место на рынке занимает аналогичный российский пакет Euler (производитель – AutoMechanics, www.euler.ru).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]