Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_po_matanu_1 (1).doc
Скачиваний:
12
Добавлен:
23.11.2018
Размер:
705.54 Кб
Скачать
  1. Направление выпуклости функции.

ОПР1: Будем говорить, что график функции Y=f(x) имеет на (a, b) выпуклость, направленную вниз (вверх), если он расположен не ниже (не выше) любой касательной к графику функции на (a, b).

ТЕОР1: Если функция Y=f(x) имеет на интервале (a, b) вторую производную и f ’’(x) 0 (f ’’(x) 0)во всех точках (a, b), то график функции Y=f(x) имеет на (a, b) выпуклость, направленную вниз (вверх).

Док-во: Докажем для f ’’(x) 0 для x(a, b). Пусть X0 - точка (a, b). Докажем, что график функции Y=f(x) лежит не ниже касательной, проходящей через точку M(X0, f(X0)). Уравнение касательной имеет вид Y=f(X0) + f ’(X0) (x - X0), где Y – текущая ордината касательной. Разложим функцию Y=f(x) в ряд Тейлора для n=1. Получим y =f(x) =f(X0) + (f ’(X0)/1!) (x - X0) + (f ’’()/2!) (x - X0), где (X0, x). Вычитая полученные равенства, имеем yY=(f ’’()/2!) (x - X0). Так как f ’’() 0 по условию, то (f ’’()/2!) (x - X0) 0 для x(a, b) yY 0 y Y для x(a, b). А это означает, что всюду на (a, b) график функции лежит не ниже касательной, проведенной через точку M(X0, f(X0)).

  1. Точки перегиба графика функции. Необходимое условие точки перегиба.

ОПР1: Точка M(X0, f(X0)) называется точкой перегиба графика функции Y=f(x), если в точке M график имеет касательную, и существует такая окрестность точки X0, в пределах которой график функции Y=f(x) слева и справа от точки X0 имеет разные направления выпуклости.

ТЕОР1: Пусть график функции Y=f(x) имеет перегиб в точке M(X0, f(X0)) и пусть функция Y=f(x) имеет в точке непрерывную вторую производную. Тогда f ’’(x) в точке обращается в 0, т. е. f ’’(x)=0.

Док-во: ПП: что f ’’(X0) 0. Тогда в силу непрерывности второй производной по теореме об устойчивости знака непрерывной функции существует окрестность точки X0, в которой f ’’(X0) < 0 (f ’’(X0) > 0), и значит (по Т о направлении выпуклости) график функции Y=f(x) имеет определенное направление выпуклости в этой окрестности. Но это противоречит наличию перегиба в точке M(X0, f(X0)). Это и доказывает теорему.

  1. Достаточное условие точки перегиба.

ТЕОР1: Пусть функция Y=f(x) имеет вторую производную в некоторой окрестности точки X0. Тогда, если в пределах указанной окрестности f ’’(X0) имеет разные знаки слева и справа от точки X0, то график Y=f(x) имеет перегиб в точке M(X0, f(X0)).

Док-во: Из того, что f ’’(X0) слева и справа от точки X0, имеет разные знаки, на основании теоремы о направлении выпуклости заключаем, что направление выпуклости графика функции слева и справа от точки X0 являются различными. Это и означает наличие перегиба в точке M(X0, f(X0)).

ЗАМ: теорема верна, если функция имеет II производную в окрестности точки за исключением самой точки и существует касательная к графику в этой точке.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]