- •Часть II
- •I.Функции нескольких переменных
- •Функция двух переменных
- •Предел функции
- •Непрерывность функции двух переменных
- •Производные и дифференциалы функции нескольких переменных
- •Частные производные высших порядков
- •Дифференцируемость и полный дифференциал функции
- •Дифференциалы высших порядков
- •Производная сложной функции. Полная производная
- •8.Инвариантность формы полного дифференциала
- •Дифференцирование неявной функции
- •Производная по направлению
- •Градиент
- •Экстремум функции двух переменных
- •Необходимые и достаточные условия экстремума
- •II. Неопределенный интеграл
- •Понятие неопределенного интеграла
- •2. Свойства неопределенного интеграла
- •3. Таблица основных неопределенных интегралов
- •4. Основные методы интегрирования
- •5. Интегрирование рациональных функций.
- •6. Интегрирование тригонометрических функций
- •7. Интегрирование иррациональных функций
- •III. Определенный интеграл
- •Определение определенного интеграла
- •Геометрический смысл определенного интеграла
- •3) Работа переменной силы
- •Формулы Ньютона-Лейбница
- •Основные свойства определенного интеграла
- •Вычисление определенного интеграла
- •Несобственные интегралы
- •7. Применение определенных интегралов для расчета геометрических и физических величин различного рода
- •7.1. Вычисление площадей плоских фигур
- •7.2 Вычисление длины дуги плоской кривой
- •7.3 Вычисление объема тела
- •8. Приближенное вычисление определенного интеграла
- •8.1. Формулы прямоугольников
- •8.2. Формула трапеций
- •8.3. Формула парабол (Симпсона)
- •IV. Кратные интегралы
- •4.1. Двойной интеграл. Основные понятия
- •4.2. Геометрический смысл двойного интеграла
- •4.3. Основные свойства двойного интеграла
- •4.4.Вычисление двойного интеграла
- •4.5. Приложения двойного интеграла
- •Статические моменты и центр тяжести плоской фигуры
- •4.6. Тройной интеграл. Основные понятия
- •4.7. Вычисление тройного интеграла.
- •4.8. Приложения тройного интеграла
- •V. Числовые ряды
- •5.1. Основные понятия
- •5.2. Необходимый признак сходимости числового ряда
- •5.3. Достаточные признаки сходимости знакопостоянных рядов
- •5.4. Признак Даламбера
- •5.5. Радикальный признак Коши
- •5.6. Интегральный признак Коши. Обобщенный гармонический ряд
- •5.7. Знакочередующиеся и знакопеременные ряды Признак Лейбница
- •5.8. Абсолютная и условная сходимость числовых рядов
- •VI.Степенные ряды
- •1 Функциональные ряды
- •1.1 Основные понятия
- •2. Некоторые приложения степенных рядов
- •2.1. Приближенное вычисление значений функций
- •2.2. Приближенное вычисление определенных интегралов
- •VII. Ряды Фурье
- •7.1. Основные понятия
- •7.2. Тригонометрический ряд Фурье
- •7.3 Разложение в ряд Фурье 2π-периодических функций. Теорема Дирихле
- •7.4. Разложение в ряд Фурье четных и нечетных функций
- •7.5. Разложение в ряд Фурье функций произвольного периода
- •VIII. Дифференциальные уравнения (д.У.)
- •8.1. Общие сведения на основании понятия о д.У.
- •8.2. Дифференциальное уравнение первого порядка
- •3. Линейные уравнения
- •Метод Бернулли
- •8.3.Дифференциальные уравнения высших порядков
- •1.Решение путем понижения порядка уравнения.
- •2.Линейные дифференциальные уравнения высших порядков.
- •8.4. Решение ду второго порядка с постоянными коэффициентами.
- •1.Решение лоду второго порядка с постоянными коэффициентами.
- •2. Решение лоду n –го порядка с постоянными коэффициентами.
- •Линейные неоднородные дифференциальные уравнения (лнду)
- •1.Структура общего решения лнду второго порядка.
- •2.Метод вариации произвольных постоянных.
- •3.Решение лнду второго порядка с постоянными коэффициентами и правой частью специального вида.
- •4.Решение лнду n- го порядка с постоянными коэффициентами и правой специальной частью.
- •Системы дифференциальных уравнений
- •Решение нормальных систем.
- •2.Системы линейных ду с постоянными коэффициентами.
-
Экстремум функции двух переменных
Понятия max, min,
экстремума функции двух переменных
аналогичны соответствующим понятиям
функции одной переменной. Пусть функция
Z= f(x; у) определена в
некоторой области D и т.
М
принадлежит к этой области. Точка М
называется точкой max
функции Z= f(x; у), если
существует такая δ-окрестность точки
,
что для каждой точки из этой окрестности
выполняется неравенство
.
Аналогичным образом определяется и
точка min, только знак
неравенства при этом изменится
.
Значение функции в точке max
(min) называется максимумом
(минимумом). Максимум и минимум функции
называются экстремумами.
-
Необходимые и достаточные условия экстремума
Теорема: (Необходимые условия
экстремума). Если в точке М
дифференцируемая функция Z= f(x;
у) имеет экстремум, то ее частные
производные в этой точке равны нулю:
,
.
Доказательство: зафиксировав одну
из переменных x или y,
превратим Z= f(x; у) в функцию
одной переменной, для экстремума которой
вышеописанные условия должны выполняться.
Геометрически равенства
и
означают, что в точке экстремума функции
Z= f(x; у), касательная
плоскость к поверхности, изображающую
функцию f(x,y)=Z
параллельна плоскости OXY,
т.к. уравнение касательной плоскости
есть Z=Z0.
Точка, в которой частные производные
первого порядка функции Z= f(x;
у) равны нулю, т.е.
,
,
называются стационарной точкой функции.
Функция может иметь экстремум в точках,
где хотя бы одна из частных производных
не существует. Например Z=|-
|
имеет max в точке O(0,0),
но не имеет в этой точке производных.
Стационарные точки и точки, в которых хотя бы одна частная производная не существует, называются критическими точками. В критических точках функция может иметь экстремум, а может и не иметь. Равенство нулю частных производных является необходимым, но не достаточным условием существования экстремума. Например, при Z=xy точка O(0,0) является критической. Однако экстремума в ней функция Z=xy не имеет. (Т.к. в I и III четвертях Z>0, а в II и IV – Z<0). Таким образом для нахождения экстремумов функции в данной области необходимо подвергнуть каждую критическую точку функции дополнительному исследованию.
Теорема: (Достаточное условие
экстремумов). Пусть в стационарной точке
и некоторой окрестности функция f(x;
у) имеет непрерывные частные производные
до 2ого порядка включительно.
Вычислим в точке
значения
,
и
![]()
.
Обозначим
Тогда:
-
если
,
то f(x; у) в точке
имеет экстремум max, если
А<0 и min, если А>0. -
если
,
то f(x; у) в точке
экстремума
не имеет.
В случае если
,
экстремум в точке
может быть, а может и не быть. Необходимы
дополнительные исследования.
II. Неопределенный интеграл
-
Понятие неопределенного интеграла
В дифференцируемом исчислении мы решали
задачу как по данной функции f(x)
найти ее производную (или дифференциал).
Интегральное исчисление решает обратную
задачу: найти функцию F(x),
зная ее производную
(или дифференциал). Искомую функцию F(x)
называют первообразной функции
f(x).
F(x) –
называется первообразной функции f(x)
на интервале (a, b),
если для любого
выполняется равенство
(или
.
Например, первообразной функции
является функция
,
так как
.
Очевидно, что первообразными будут
также любые функции
,
где С – постоянная, поскольку
.
Теорема 1. Если F(x)
является первообразной функции f(x)
на
,
то множество всех первообразных для
f(x) задается
формулой
,
где С – постоянное число.
Док-во. Функция
- первообразная f(x).
Действительно,
.
Пусть
некоторая другая отличная от
первообразная функции
,
т.е.
=
.
Тогда для любого
имеем
![]()
,
а это означает, что
,
где С -
.
Следовательно,
.
Множество всех первообразных функций
для
называется неопределенным интегралом
от функции
и обозначается символом
.
Таким образом
=
.
Здесь
- называется подынтегральной функцией,
- подынтегральным выражением, x
– переменной интегрирования,
-
знаком неопределенного интеграла.
Операция нахождения неопределенного
интеграла – интегрированием этой
функции.
