Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Содержание.docx
Скачиваний:
15
Добавлен:
14.11.2018
Размер:
239.02 Кб
Скачать

Физический смысл термодинамики Необходимость термодинамики

Термодинамика исторически возникла как эмпирическая наука об основных способах преобразования внутренней энергии тел для совершения механической работы. Однако в процессе своего развития термодинамика проникла во все разделы физики, где возможно ввести понятие «температура» и позволила теоретически предсказать многие явления задолго до появления строгой теории этих явлений.

[Законы — начала термодинамики

Термодинамика основывается на трёх законах — началах, которые сформулированы на основе экспериментальных данных и поэтому могут быть приняты как постулаты.

* 1-й закон — первое начало термодинамики. Представляет собой формулировку обобщённого закона сохранения энергии для термодинамических процессов. В наиболее простой форме его можно записать как δQ = δA + dU, где dU есть полный дифференциал внутренней энергии системы, а δQ и δA есть элементарное количество теплоты, переданное системе, и элементарная работа, совершенная системой соответственно. Нужно учитывать, что δA и δQ нельзя считать дифференциалами в обычном смысле этого понятия, поскольку эти величины существенно зависят от типа процесса, в результате которого состояние системы изменилось.

* 2-й закон — второе начало термодинамики: Второй закон термодинамики исключает возможность создания вечного двигателя второго рода. Имеется несколько различных, но в то же время эквивалентных формулировок этого закона.

1 — Постулат Клаузиуса. Процесс, при котором не происходит других изменений, кроме передачи теплоты от горячего тела к холодному, является необратимым, то есть теплота не может перейти от холодного тела к горячему без каких-либо других изменений в системе. Это явление называют рассеиванием или диссипацией энергии.

Приведем второе начало термодинамики в аксиоматической формулировке Рудольфа Юлиуса Клаузиуса (1865): Для любой квазиравновесной термодинамической системы существует однозначная функция термодинамического состояния S = S(T,x,N), называемая энтропией, такая, что ее полный дифференциал dS = δQ / T.

2 — Постулат Кельвина. Процесс, при котором работа переходит в теплоту без каких-либо других изменений в системе, является необратимым, то есть невозможно превратить в работу всю теплоту, взятую от источника с однородной температурой, не проводя других изменений в системе.

* 3-й закон — третье начало термодинамики: Теорема Нернста: Энтропия любой системы при абсолютном нуле температуры всегда может быть принята равной нулю.

* Примечание — нулевое начало термодинамики:

Для каждой изолированной термодинамической системы существует состояние термодинамического равновесия, которого она при фиксированных внешних условиях с течением времени самопроизвольно достигает.

Основные формулы термодинамики Условные обозначения

Обозначение

Название величины

Размерность / Значение

Формула

Температура

K

Давление

Па

Объём

м³

Средняя энергия молекулы

Дж

Средняя кинетическая энергия молекулы

Дж

Масса

кг

Молярная масса

кг/моль

Постоянная Авогадро

6.0221415(10)×1023 моль-1

Постоянная Больцмана

1.3806505(24)×10−23 Дж/К

Газовая постоянная

8.314472(15) Дж/(К·моль)

Число степеней свободы молекулы

-

Количество вещества в j-й компоненте n-компонентной смеси

моль

вектор с координатами

моль

Химический потенциал j-й компоненты n-компонентной смеси

Дж/моль

Внутренняя энергия

Дж

Энтропия

Дж/К

Энтальпия

Дж

Свободная энергия (энергия Гельмгольца)

Дж

Свободная энтальпия (энергия Гиббса)

Дж

Работа, совершённая газом

Дж

Тепло, переданное газу

Дж

Молярная теплоёмкость газа при постоянном давлении

Дж/(К·моль)

Молярная теплоёмкость газа при постоянном объёме

Дж/(К·моль)

Удельная теплоёмкость

Дж/(К·кг)

Показатель адиабаты

-