
- •Закон Кулона
- •Электростатическое поле. Напряженность электростатического поля
- •Потенциал электростатического поля
- •Принцип суперпозиции электростатических полей.
- •Проводники в электростатическом поле
- •Типы диэлектриков. Поляризация диэлектриков
- •Поляризованность. Напряженность поля в диэлектрике
- •Тема 1.2 Электроёмкость Конденсаторы. Соединения конденсаторов. Энергия
- •Электрическая емкость уединенного проводника
- •Конденсаторы
- •Тема 1.3 Электрические цепи постоянного тока
- •Сторонние силы. Электродвижущая сила и напряжение
- •. Закон Ома. Сопротивление проводников
- •Работа и мощность тока. Закон Джоуля — Ленца
- •Закон Ома для неоднородного участка цепи
- •Тема 1.4 Основы расчета электрических цепей постоянного тока
- •Раздел 2 электромагнетизм
- •Тема 2.1 Основные свойства и характеристики магнитного поля
- •Магнитное поле и его характеристики
- •Закон Био — Савара — Лапласа и его применение к расчету магнитного поля
- •Закон Ампера. Взаимодействие параллельных токов
- •Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля
- •. Магнитное поле движущегося заряда
- •Действие магнитного поля на движущийся заряд
- •Движение заряженных частиц в магнитном поле
- •Тема 2.2 Электромагнитная индукция
- •Поток вектора магнитной индукции
- •Работа по перемещению проводника и контура с током в магнитном поле
- •Явление электромагнитной индукции (опыты Фарадея)
- •Закон Фарадея
- •Индуктивность контура. Самоиндукция
- •Намагниченность. Магнитное поле в веществе
- •§ 134. Условия на границе раздела двух магнетиков
- •Ферромагнетики и их свойства
- •Природа ферромагнетизма
- •Магнитные поля соленоида и тороида
- •Энергия магнитного поля
- •Раздел 3 однофазные электрические цепи переменного тока
- •Тема 3.1 Однофазный переменный ток. Получение переменного тока. Действующее
- •Тема 3.2 Метод векторных диаграмм Цепь переменного тока с активным
- •Тема 3.3 Расчет цепей переменного тока
- •Раздел 4 трансформаторы
- •Тема 4.1 Трансформаторы
- •Раздел 5 электроника физические основы электроники.
- •Тема 5.1 Электрофизические свойства полупроводников
- •Тема 5.2 Полупроводниковые диоды
- •Раздел 6 электронные выпрямители и стабилизаторы
- •Тема 6.1 Выпрямительные устройства
- •Тема 6.2 Сглаживающие фильтры
- •Тема 6.3 Стабилизаторы напряжения и тока
- •Раздел 7. Химические источники электроэнергии
- •Тема 7.1 Химические источники электроэнергии
- •1. Преобразование химической энергии в электрическую
- •2. Преобразование электрической энергии в химическую
- •Раздел8 Изображение несинусоидальных токов и .Напряжений с помощью
- •Тема 8.1 Изображение несинусоидальных токов и .Напряжений с помощью
- •Раздел 9
- •Тема 9.1 уравнения длинной линии
- •Основные уравиения длинной линии
- •Характеристики длинной линии
- •Холостой ход
- •Короткое замыкание
- •Стоячая волна
- •Бегущая волна
- •Волновое сопротивление. Длина волны
- •Режим с согласованной нагрузкой
- •Режим с несогласованной нагрузкой
- •Электромагнитная волна с прямоугольным фронтом
- •Раздел10. Организация электропитания средств вычислительной
- •Тема 10.1 организация электропитания средств вычислительной
Холостой ход
При холостом ходе линии (I2 = 0)
Напряжение и ток вдоль линии в любой момент времени распределены по синусоидальному закону, причем. в пунктах, где напряжение равно нулю, ток имеет наибольшую величину, а в пунктах с наибольшим напряжением ток равен нулю (рис. 26.6, а, б).
Точки линии, в которых напряжение или ток равны нулю, называются узлами, а точки с наибольшей величиной напряжения или тока — пучностями.
Таким образом, узлы напряжения по месту расположения на линии совпадают с пучностями тока, а пучности напряжения — с узлами тока.
Положение узлов напряжения и пучностей тока найдем, приравняв нулю напряжение в первом уравнении (26.14): U = 0 при β х = k+π/2, где k—любое целое число или нуль, т. е.
при β х = π/2, 3 π/2, 5 π/2 и т.д.
Положение на линии узлов тока и пучностей напряжения определяется из второго уравнения (26.14) при I= 0.
Напряжение и ток, распределяясь вдоль линии по синусоидальному закону без затухания, по такому же закону изменяются во времени.
Короткое замыкание
Аналогичная картина наблюдается и при коротком замыкании конца линии без потерь Отличие электромагнитных процессов в линии без потерь в режимах холостого хода и короткого замыкания состоит лишь в том, что изменяется расположение пучностей и узлов напряжения и тока по длине линии: в тех пунктах, где при холостом ходе находятся пучности напряжения и узлы тока, при коротком замыкании обнаруживаются пучности тока и : узлы напряжения. В частности, в конце разомкнутой линии имеется пучность напряжения и узел тока (I2 = 0), а в конце короткозамкнутой линии имеются пучность тока и узел напряжения (U2=0).
Стоячая волна
Пусть вектор напряжения в конце разомкнутой линии направлен по действительной оси комплексной плоскости, т. е. начальная временная фаза напряжения равна нулю:
В этом случае мгновенные значения напряжения и тока в линии можно выразить. уравнениями
При ωt = 0 во всех точках линии напряжение отсутствует (u = 0). Затем напряжение растет во всех пунктах линии, кроме узлов, и при ωt = π/2 достигает амплитуды.
Но эта амплитуда напряжения во всех пунктах линии разная. В месте пучности напряжение достигает наибольшего значения U2m а в узле оно всегда равно нулю.
Электромагнитный процесс, подчиняющийся уравнениям (26.15), называется стоячей волной, характерной особенностью которой является неподвижность узлов и пучностей на линии.
Бегущая волна
Из тригонометрии известно, что
Следовательно, напряжение и ток в линии можно представить суммой двух составляющих, каждая из которых является уравнением бегущей волны:
Первое слагаемое в этих уравнениях — прямая волна, распространяющаяся от начала к концу линии; второе — обратная волна с такой же амплитудой.
В этом можно убедиться, рассмотрев подробно одну из составляющих, например первую в уравнении напряжения.
Предположим, что некоторая величина напряжения u’ в момент времени t имеет место в пункте, пространственное положение которого определяется расстоянием х от конца (или начала) линии (см. рис. 26.5)
Распространение волны напряжения означает, что через бесконечно малый промежуток времени dt такое же напряжение u’ возникает в другом пункте линии, отстоящем от первого на бесконечно малое расстояние dх:
Равенство напряжений в моменты времени, отстоящие на dt, возможно при равенстве аргументов синусов в обоих уравнениях, т. е. при
Отсюда
Отношение dx/dt характеризует скорость распространения волны напряжения вдоль линии и называется фазовой скоростью волны.
Знак минус указывает на то, что волна движется от начала к концу линии (расстояние х уменьшается).
Аналогично можно показать, что вторая составляющая напряжения в уравнении (26.16) представляет собой волну, распространяющуюся в обратном направлении (х увеличивается).
Волна, распространяющаяся от начала к концу линии, называется прямой или падающей, а волна, распространяющаяся в обратном направлении (от конца линии к началу), — обратной или отраженной.
Те же рассуждения можно отнести к составляющим тока во втором уравнении (26.16).
Таким образом, стоячая волна напряжения представляет собой сумму, а волна тока —-разность прямой (падающей) и обратной (отраженной) волн одинаковой амплитуды.