
- •Закон Кулона
- •Электростатическое поле. Напряженность электростатического поля
- •Потенциал электростатического поля
- •Принцип суперпозиции электростатических полей.
- •Проводники в электростатическом поле
- •Типы диэлектриков. Поляризация диэлектриков
- •Поляризованность. Напряженность поля в диэлектрике
- •Тема 1.2 Электроёмкость Конденсаторы. Соединения конденсаторов. Энергия
- •Электрическая емкость уединенного проводника
- •Конденсаторы
- •Тема 1.3 Электрические цепи постоянного тока
- •Сторонние силы. Электродвижущая сила и напряжение
- •. Закон Ома. Сопротивление проводников
- •Работа и мощность тока. Закон Джоуля — Ленца
- •Закон Ома для неоднородного участка цепи
- •Тема 1.4 Основы расчета электрических цепей постоянного тока
- •Раздел 2 электромагнетизм
- •Тема 2.1 Основные свойства и характеристики магнитного поля
- •Магнитное поле и его характеристики
- •Закон Био — Савара — Лапласа и его применение к расчету магнитного поля
- •Закон Ампера. Взаимодействие параллельных токов
- •Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля
- •. Магнитное поле движущегося заряда
- •Действие магнитного поля на движущийся заряд
- •Движение заряженных частиц в магнитном поле
- •Тема 2.2 Электромагнитная индукция
- •Поток вектора магнитной индукции
- •Работа по перемещению проводника и контура с током в магнитном поле
- •Явление электромагнитной индукции (опыты Фарадея)
- •Закон Фарадея
- •Индуктивность контура. Самоиндукция
- •Намагниченность. Магнитное поле в веществе
- •§ 134. Условия на границе раздела двух магнетиков
- •Ферромагнетики и их свойства
- •Природа ферромагнетизма
- •Магнитные поля соленоида и тороида
- •Энергия магнитного поля
- •Раздел 3 однофазные электрические цепи переменного тока
- •Тема 3.1 Однофазный переменный ток. Получение переменного тока. Действующее
- •Тема 3.2 Метод векторных диаграмм Цепь переменного тока с активным
- •Тема 3.3 Расчет цепей переменного тока
- •Раздел 4 трансформаторы
- •Тема 4.1 Трансформаторы
- •Раздел 5 электроника физические основы электроники.
- •Тема 5.1 Электрофизические свойства полупроводников
- •Тема 5.2 Полупроводниковые диоды
- •Раздел 6 электронные выпрямители и стабилизаторы
- •Тема 6.1 Выпрямительные устройства
- •Тема 6.2 Сглаживающие фильтры
- •Тема 6.3 Стабилизаторы напряжения и тока
- •Раздел 7. Химические источники электроэнергии
- •Тема 7.1 Химические источники электроэнергии
- •1. Преобразование химической энергии в электрическую
- •2. Преобразование электрической энергии в химическую
- •Раздел8 Изображение несинусоидальных токов и .Напряжений с помощью
- •Тема 8.1 Изображение несинусоидальных токов и .Напряжений с помощью
- •Раздел 9
- •Тема 9.1 уравнения длинной линии
- •Основные уравиения длинной линии
- •Характеристики длинной линии
- •Холостой ход
- •Короткое замыкание
- •Стоячая волна
- •Бегущая волна
- •Волновое сопротивление. Длина волны
- •Режим с согласованной нагрузкой
- •Режим с несогласованной нагрузкой
- •Электромагнитная волна с прямоугольным фронтом
- •Раздел10. Организация электропитания средств вычислительной
- •Тема 10.1 организация электропитания средств вычислительной
Раздел 9
Тема 9.1 уравнения длинной линии
Длинные линии строят для передачи электрической энергии, для электросвязи (передачи информации). Их рассматривают как объекты с распределенными параметрами при низких частотах и длине в десятки и сотни километров.
В радиотехнике при высоких частотах распределениё параметров по длине учитывают в более коротких участках проводов (единицы и доля метра), например в антеннах.
Схемы замещения длинных линий
На
рис. изображена схема электрической
цепи, состоящей из источника и приемника
электрической энергии, связанных
двухпроводной линией. Эту цепь можно
рассматривать неразветвленной, с
одинаковым током во всех ее элементах,
если не учитывать двух обстоятельств:
скорость распространения электромагнитных
возмущений конечна; имеются токи,
обусловленные емкостью между проводами
(емкостный ток) и проводимостью изоляции
(ток утечки через изоляцию).
В данном случае первое обстоятельство можно не учитывать, так как скорость распространения электромагнитных возмущений действительно велика (в вакууме равна скорости света)
Емкостные токи и токи утечки пропорциональны напряжению между проводами; кроме того, емкостной ток увеличивается с ростом частоты, так как уменьшается емкостное сопротивление. Поэтому при высоком напряжении или большой частоте, а также при большой длине линии емкостные токи и токи утечки становятся значительными по величине и их нельзя исключить из расчета.
Токи между проводами существуют на сколь угодно малом отрезке линии, поэтому ток в проводах уменьшается по мере удаления от начала линии.
Вдоль линии напряжение между проводами тоже неодинаково. Оно уменьшается в направлении от начала к концу линии, так как растет падение напряжения, обусловленное активным и индуктивным сопротивлениями проводов.
Для расчета можно составить схему замещения линии, изображенную на рис. 26.2. На схеме замещения бесконечно малый участок двухпроводной линии длиной dх представлен ячейкой с активным сопротивлением R0 dх прямого и обратного проводов, индуктивностью L0 dх , проводимостью G0 dх и емкостью С0dх между проводами. Вся линия изображается электрической схемой последовательного соединения таких ячеек. Активное сопротивление, индуктивность, проводимость и емкость считают равномерно распределенными вдоль линий, а L0, С0 G0 — величины этих параметров на единицу длины.
Линия с равномерным распределением параметров называется однородной. Реальные линии можно считать однородными лишь приближенно, так как параметры их все же распределены неравномерно. Например, проводимость воздушной линии сосредоточена в основном на опорах, а благодаря провесу проводов емкость по отношению к земле вдоль пролета неодинакова.
В зависимости от целей и требуемой точности расчета можно учитывать все четыре параметра или некоторые из них. Так, при рассмотрении линии электропередачи с напряжением до 35 кВ и при частоте 50 Гц часто не учитывают емкостные токи и токи утечки, т. е. считают равными нулю параметры G0 и С0.
При высокой частоте (например, в
радиотехнических устройствах) или при
коротких импульсах напряжения а линиях,
возникающих
от грозовых разрядов, емкостные токи
между проводами могут быть сравнительно
большими и ими пренебрегать нельзя.
Вместе с тем при высокой частоте и малой длине линии в отдельных случаях. можно пренебречь активным сопротивлением Rо и проводимостью G0.
При таком упрощении получается линия без потерь, схема замещения которой показана на рис.